1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
15

A copy machine makes copies at a constant rate. The machine can make 80 copies in 2.5 minutes. Write an equation to represent th

e number of copies, n, that can be made over any time interval,t. ( PLEASE HELP ANSWER THIS QUICKLY!!!!)
Mathematics
1 answer:
Doss [256]3 years ago
6 0
80/2.5 = 32
n = 32t
hope it helps (:
You might be interested in
The number of different 5 digit combinations possible if successive digits must be different is
padilas [110]
You have a 1/1000 chance of getting the code correct
6 0
3 years ago
Question should be added to the sum 8352 484 365 get the answer
mart [117]
Yeah Yuh need 2 add all of that up
8 0
4 years ago
200-3.5 x 2.8 what is the product?
stiks02 [169]

Answer:

190.2

Explanation:

3.5x2.8=9.8

200-9.8=190.2

7 0
3 years ago
Read 2 more answers
What is the sum of -4 and -6?<br> -2<br> -10<br> 2<br> 10
Anni [7]

Answer:

B..-10

Step-by-step explanation:

this isn't wrong I promise!

3 0
3 years ago
Read 2 more answers
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • The fifth period Coordinate Algebra class received their quiz grades back from Mr. Smith today. The students were offered a chan
    13·1 answer
  • Mai works as a tutor for
    10·1 answer
  • -2(7 + 8p) = 18 - 8p
    14·2 answers
  • find the first, fourth, and tenth terms of the arithmetic sequence described by the given rule A(n)=-6+(n-1)(1/5)
    9·2 answers
  • What is 10 and 7/12 in an improper fraction
    13·2 answers
  • two movie theaters each surveyed 21 customers to determine their ages the table shows a summary of the results
    9·1 answer
  • What is the angle relationship?
    6·1 answer
  • You have $75 and need to buy 9 books at the bookstore and each book costs d dollars. ​Write an algebraic expression to represent
    12·1 answer
  • A study claims that the average home sale price in Kansas is less than the average home sale price in Missouri. The average sale
    5·1 answer
  • Show you work for full credit Use the SUBSITUTION method or ELIMINATION method to solve this system of equations. y = 4x and 8x
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!