Answer:
A.Glycogenesis: Glycogen synthase
B. Glucogenesis: Fructose 1,6 biphosphate phosphatase
C. Urea cycle : Carbamoyl phosphate synthetase
D.Fatty acid synthesis: Acetyl CoA carboxylase
E.Glycolysis : Phosphofructokinase 1
F. Pentose phosphate pathway: Glucose-6-phosphate dehydrogenase
Explanation:
A. Glycogen synthase converts glucose into glycogen during glycogenesis.
B. Fructose 1,6 biphosphate phosphatase catalyzes condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate during glucogenesis.
C. Carbamoyl phosphate synthetase I catalyses production of arbamoyl phosphate during urea cycle.
D. Carboxylase controls fatty acid metabolism.
E. The phosphofructokinase 1 is an important enzyme that regulate formation of two-phosphate sugar molecules during glycolysis.
F. Glucose-6-phosphate dehydrogenase participates in the pentose phosphate pathway. This pathway gives reducing energy to cells.
Answer: Well I don't know it depends
Explanation:
<h3>Answer:</h3>
c. Using a combination of policy tools prevents the use of mandatory policies.
<h3>Explanation:</h3>
Regulating and controlling behavior is crucial for authorities. Authorities employ a number of tools such as enactment, penalties, laws, taxes, and support in order to change behavior in the concern of the people. The rising amount of policy difficulties has produced a difficulty for governments to control action. Moreover, conventional tools and methods in executing policy may be insufficient and ineffectual in circumstances of our current situation.
Answer:
The main products of cellular respiration are CO2, H2O, and chemical energy/heat.
Explanation:
Here is the equation for cellular respiration:
C6H12O6 + 6O2 --> 6CO2 + 6H2O + heat
Answer:
Kidneys are the important organ of excretion. Human kidneys are bean shaped located below the rib cage. Different vessels are involved in the transportation of blood from the abdominal aorta and back to the inferior vena cava.
The order of blood vessels are:
The blood enters in the aorta and and moves to the renal artery. Then the blood moves to the interlobar artery via segmental artery. The blood enters in the afferent glomerular arteriole from the arcuate artery and cortical radiate artery. Glomerulus receive the blood from the afferent glomerular arteriole. Then, the blood moves to the efferent glomerular arteriole. The blood then enters in the cortical radiate vein via peritubular capillaries and vasa recta. The blood moves back to the inferior vena cava from the arcuate vein, interlobar vein and renal vein.