Answer:
C
Explanation:
The kicker exerts more force of the football which is why the football moves when its kicked.
Answer:
w₂ = 22.6 rad/s
Explanation:
This exercise the system is formed by platform, man and bricks; For this system, when the bricks are released, the forces are internal, so the kinetic moment is conserved.
Let's write the moment two moments
initial instant. Before releasing bricks
L₀ = I₁ w₁
final moment. After releasing the bricks
= I₂W₂
L₀ = L_{f}
I₁ w₁ = I₂ w₂
w₂ = I₁ / I₂ w₁
let's reduce the data to the SI system
w₁ = 1.2 rev / s (2π rad / 1rev) = 7.54 rad / s
let's calculate
w₂ = 6.0/2.0 7.54
w₂ = 22.6 rad/s
Answer:
- Power requirement <u>P</u> for the banner is found to be 30.62 W
- Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
- Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
- Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W
Explanation:
First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:
- v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
- The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
- The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
- The equation to determine drag-force is:

In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>
Frontal area A of the banner is : 25 x 0.8 = 20 m^2
<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>
<em></em>
<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28
Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>
<u><em></em></u>
<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption
<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:
Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N
P = 0.962 * 41.66 = <u><em>40.08 W</em></u>
decomposing water does not require High activation energy
Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile
The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile
The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.