The distance in meters she would have moved before she begins to slow down is 11.25 m
<h3>
LINEAR MOTION</h3>
A straight line movement is known as linear motion
Given that Ann is driving down a street at 15 m/s. Suddenly a child runs into the street. It takes Ann 0.75 seconds to react and apply the brakes.
To know how many meters will she have moved before she begins to slow down, we need to first list all the given parameters.
From definition of speed,
speed = distance / time
Make distance the subject of the formula
distance = speed x time
distance = 15 x 0.75
distance = 11.25m
Therefore, the distance in meters she would have moved before she begins to slow down is 11.25 m
Learn more about Linear motion here: brainly.com/question/13665920
Answer:
v = 12.12 m/s
Explanation:
Given that,
The mass of the cart, m = 75 kg
The roller coaster begins 15 m above the ground.
We need to find the velocity of the cart halfway to the ground. Let the velocity be v. Using the conservation of energy at this position, h = 15/2 = 7.5 m

So, the velocity of the cart is 12.12 m/s.
The trains take <u>57.4 s</u> to pass each other.
Two trains A and B move towards each other. Let A move along the positive x axis and B along the negative x axis.
therefore,

The relative velocity of the train A with respect to B is given by,

If the train B is assumed to be at rest, the train A would appear to move towards it with a speed of 170 km/h.
The trains are a distance d = 2.71 km apart.
Since speed is the distance traveled per unit time, the time taken by the trains to cross each other is given by,

Substitute 2.71 km for d and 170 km/h for 

Express the time in seconds.

Thus, the trains cross each other in <u>57.4 s</u>.
Answer:
Two equal and opposite parallel forces not acting along the same line, form a couple. A couple is always needed to produce the rotation.
For example, turning a key in a lock and turning a steering wheel.