1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
3 years ago
12

Jamie wants to know the volume of his gold ring in cubic centimeters. He gets a rectangular glass with a base

Mathematics
2 answers:
mixer [17]3 years ago
7 0

Answer:

1.50 cm^3.

Step-by-step explanation:

The ring will displace its own volume of water.

The increase in height of the water = 4.25 - 4 = 0.25 cm.

Therefore the increase in the volume =  area of the base of the glass * 0.25

= 3 * 2 * 0.25

=  6 * 0.25

= 1.50 cm^3.

This is also the volume of the ring.

Advocard [28]3 years ago
3 0

Answer:

1.50 cm^3

Step-by-step explanation:

You might be interested in
A Broadway theater has 800 ​seats, divided into​ orchestra, main, and balcony seating. Orchestra seats sell for $ 40 comma main
KatRina [158]

Answer:

<em>orchestra seats: main seats: balcony seats: 160: 400: 240</em>

Step-by-step explanation:

Let number of orchestra seats = x

Let number of main seats = y

Let number of balcony seats = z

As per given statement, total seats are 800

x +y+z=800 ..... (1)

Sales price of each orchestra seat = $40

Sales price of each main seat = $30

Sales price of each balcony seat = $20

If all the seats are sold, total revenue is $23200.

\Rightarrow 40x + 30y+20z=23200 ...... (2)

If all the main and balcony seats are​ sold, but only half the orchestra seats are​ sold, the gross revenue is $ 20 comma 000.

\Rightarrow 40\times \dfrac{x}{2} + 30y+20z=20000\\\Rightarrow 20x + 30y+20z=20000 ...... (3)

Here, we have 3 variables and 3 equations. Let us solve them.

Subtracting Equation (3) from equation (2):

\Rightarrow 20x = 3200\\\Rightarrow x = 160

Putting value of x in equations (1) and (2):

Equation (1)

\Rightarrow 160 +y+z=800\\\Rightarrow  y+z=640 ...... (4)

Equation (2)

\Rightarrow 40\times 160 +30y+20z=23200\\\Rightarrow  30y+20z=16800\\\Rightarrow 3y +2z=1680 ...... (5)

Equation (5) - 2 \times Equation(4):

\Rightarrow y =400

Putting value of y in equation (4):

400 +z = 640\\\Rightarrow z =240

Hence, answer is:

<em>orchestra seats: main seats: balcony seats: 160: 400: 240</em>

4 0
3 years ago
Please help me with this question thank you
gulaghasi [49]

Answer:

\mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

Step-by-step explanation:

Given

y=\sqrt{\frac{2x+1}{x-1}}

Taking square of both sides

y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)\:^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Simplify}

y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=0

As we know that \mathrm{Apply\:Difference\:of\:Two\:Squares\:Formula:\:}x^2-y^2=\left(x+y\right)\left(x-y\right)

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2x+1}{x-1}}\right)^2:\quad \left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)

so

\left(y+\sqrt{\frac{2x+1}{x-1}}\right)\left(y-\sqrt{\frac{2x+1}{x-1}}\right)=0        

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2x+1}{x-1}}=0

\mathrm{Subtract\:}y\mathrm{\:from\:both\:sides}

y+\sqrt{\frac{2x+1}{x-1}}-y=0-y

\sqrt{\frac{2x+1}{x-1}}=-y

\mathrm{Square\:both\:sides}

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2

\mathrm{Expand\:}\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}=a^{\frac{1}{2}}

=\left(\left(\frac{2x+1}{x-1}\right)^{\frac{1}{2}}\right)^2

=\frac{2x+1}{x-1}

so equation  \left(\sqrt{\frac{2x+1}{x-1}}\right)^2=\left(-y\right)^2 becomes

\frac{2x+1}{x-1}=y^2

now

\mathrm{Solve\:}\:\frac{2x+1}{x-1}=y^2

\frac{2x+1}{x-1}=y^2

\mathrm{Multiply\:both\:sides\:by\:}x-1

\frac{2x+1}{x-1}\left(x-1\right)=y^2\left(x-1\right)

2x+1=y^2\left(x-1\right)

2x+1=xy^2-y^2         ∵  y^2\left(x-1\right):\quad xy^2-y^2

2x=xy^2-y^2-1

2x-xy^2=-y^2-1

x\left(2-y^2\right)=-y^2-1         ∵ \mathrm{Factor}\:2x-xy^2:\quad x\left(2-y^2\right)

\mathrm{Divide\:both\:sides\:by\:}2-y^2

\frac{x\left(2-y^2\right)}{2-y^2}=-\frac{y^2}{2-y^2}-\frac{1}{2-y^2}

x=\frac{-y^2-1}{2-y^2}

so

y+\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\le \:0\right\}

similarly

y-\sqrt{\frac{2x+1}{x-1}}=0:\quad x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

\mathrm{Verify\:Solutions}:\quad x=\frac{-y^2-1}{2-y^2}

\mathrm{Check\:the\:solutions\:by\:plugging\:them\:into\:}y^2=\left(\sqrt{\frac{2x+1}{x-1}}\right)^2

\mathrm{Remove\:the\:ones\:that\:don't\:agree\:with\:the\:equation.}

\mathrm{Plug}\quad x=\frac{-y^2-1}{2-y^2}

y^2=\left(\sqrt{\frac{2\left(\frac{-y^2-1}{2-y^2}\right)+1}{\left(\frac{-y^2-1}{2-y^2}\right)-1}}\right)^2

\mathrm{Subtract\:}\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2\mathrm{\:from\:both\:sides}

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2

y^2-\left(\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2=0

\mathrm{Factor\:}y^2-\left(\sqrt{\frac{2\frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)^2:\quad \left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)

so

\left(y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)\left(y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}\right)=0

\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)

\mathrm{Solve\:}\:y+\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\le \:0

\mathrm{Solve\:}\:y-\sqrt{\frac{2\cdot \frac{-y^2-1}{2-y^2}+1}{\frac{-y^2-1}{2-y^2}-1}}=0:\quad y\ge \:0

\mathrm{True\:for\:all}\:y

Therefore,  \mathrm{The\:solution\:is} :

x=\frac{-y^2-1}{2-y^2}\space\left\{y\ge \:0\right\}

6 0
3 years ago
What is the decimal equivalent of 27 5/8
Gala2k [10]
The equivalent is 27.625
4 0
4 years ago
9-{6+[5-3+(6-2)]+8(4-7)}​
sladkih [1.3K]

Answer:

−15

Step-by-step explanation:

9−6+5−3+6−2+8(4−7)

=3+5−3+6−2+8(4−7)

=3+2+6−2+8(4−7)

=3+2+4+8(4−7)

=3+6+8(4−7)

=9+8(4−7)

=9+(8)(−3)

=9+−24

=−15

6 0
3 years ago
Help me with this problem...
IgorLugansk [536]

Answer: i think that's the correct answer

Step-by-step explanation: just a gut feeling

5 0
3 years ago
Other questions:
  • Please help. will mark brainliest if its right.180-x=3(90-x)
    5·1 answer
  • What is 965,000,000,000,000 in scientific notation?
    12·1 answer
  • Ima Neworker requires 30 minutes to produce her first unit of output. If her learning curve rte is 65%, how many units will be p
    6·1 answer
  • PLEASE I NEED HELP ON THIS!!! 29 POINTS!!
    7·1 answer
  • Is 7th grade hard? Because I have so much anxiety and get so nervous for presentations!! Someone please help!
    14·2 answers
  • Which of the following is an example of a quadratic equation?
    10·1 answer
  • 16 POINT HELP ASAP PLZ
    7·2 answers
  • *help please* What is the amplitude of the function graphed?
    11·2 answers
  • I need help....???!!
    12·2 answers
  • 35w+9w+35w^3+25w^3–25w^3<br><br>pls help
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!