1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dsp73
3 years ago
13

Help me PLEASEEEE im giving out brainly to the earliest and best one :D

Mathematics
1 answer:
Vinil7 [7]3 years ago
7 0
Y= 5x

Y= 5(2x ) = 10x

Y= 10x/ 5x

= 2

You might be interested in
I need help on both of these please///:(
SCORPION-xisa [38]

14. The distance between the two points is 14.866.

Distance can be calculated with the following formula:

d=√(x₂-x₁)²+(y₂-y₁)²

d=√(12-2)²+(5-(-6))²

d=√10²+11²

d=√100+121

d=√221

d=14.866

15. The distance between the two points is 20.248.

Use the same formula to find the distance.

d=√(x₂-x₁)²+(y₂-y₁)²

d=√(4-(-3))²+(12-(-7))²

d=√7²+19²

d=√49+361

d=√410

d=20.248

4 0
3 years ago
What is the solution of the equation when solved using the quadratic formula?<img src="https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2B
Artemon [7]

Answer:

x=\pm2i\sqrt{5}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}

<u>Algebra II</u>

  • Imaginary Numbers: √-1  = i

Step-by-step explanation:

<u>Step 1: Define Equation</u>

x² + 20 = 0

<u>Step 2: Identify Variables</u>

a = 1

b = 0

c = 20

<u>Step 3: Find roots </u><em><u>x</u></em>

  1. Substitute:                    x=\frac{-0\pm\sqrt{0^2-4(1)(20)} }{2(1)}
  2. Exponents:                   x=\frac{-0\pm\sqrt{0-4(1)(20)} }{2(1)}
  3. Multiply:                        x=\frac{-0\pm\sqrt{0-80} }{2}
  4. Subtract:                       x=\frac{\pm\sqrt{-80} }{2}
  5. Factor:                          x=\frac{\pm\sqrt{-1} \sqrt{80} }{2}
  6. Simplify:                        x=\frac{\pm4i\sqrt{5} }{2}
  7. Divide:                          x=\pm2i\sqrt{5}
6 0
3 years ago
A line passes through the points (7, 10) and (7,20). Which statement is true about the line?
wariber [46]

Answer:The answer is It has no slope because x2 - x1 in the formula m=y2-y1-x2-x1 is zero, and the denominator of a fraction cannot be zero

Step-by-step explanation:

I did the quiz

7 0
3 years ago
The receipt shows the prices of goods that Robert bought at the store.
Vladimir79 [104]

Answer:

4%

Step-by-step explanation : by subtracting the 8 by 4

5 0
3 years ago
the function intersects its midline at (-pi,-8) and has a maximum point at (pi/4,-1.5) write an equation
Tcecarenko [31]

The equation that represents the <em>sinusoidal</em> function is x(t) = -8 + 6.5 \cdot \sin \left[\left(\frac{2}{3} \pm \frac{4\cdot i}{3}\right)\cdot t + \left(\frac{2\pi}{3} \pm \frac{7\pi \cdot i}{3}  \right)\right], i\in \mathbb{Z}.

<h3>Procedure - Determination of an appropriate function based on given information</h3>

In this question we must find an appropriate model for a <em>periodic</em> function based on the information from statement. <em>Sinusoidal</em> functions are the most typical functions which intersects a midline (x_{mid}) and has both a maximum (x_{max}) and a minimum (x_{min}).

Sinusoidal functions have in most cases the following form:

x(t) = x_{mid} + \left(\frac{x_{max}-x_{min}}{2} \right)\cdot \sin (\omega \cdot t + \phi) (1)

Where:

  • \omega - Angular frequency
  • \phi - Angular phase, in radians.

If we know that x_{min} = -14.5, x_{mid} = -8, x_{max} = -1.5, (t, x) = (-\pi, -8) and (t, x) = \left(\frac{\pi}{4}, -1.5 \right), then the sinusoidal function is:

-8 +6.5\cdot \sin (-\pi\cdot \omega + \phi) = -8 (2)

-8+6.5\cdot \sin\left(\frac{\pi}{4}\cdot \omega + \phi \right) = -1.5 (3)

The resulting system is:

\sin (-\pi\cdot \omega + \phi) = 0 (2b)

\sin \left(\frac{\pi}{4}\cdot \omega + \phi \right) = 1 (3b)

By applying <em>inverse trigonometric </em>functions we have that:

-\pi\cdot \omega + \phi = 0 \pm \pi\cdot i, i \in \mathbb{Z} (2c)

\frac{\pi}{4}\cdot \omega + \phi = \frac{\pi}{2} + 2\pi\cdot i, i \in \mathbb{Z} (3c)

And we proceed to solve this system:

\pm \pi\cdot i + \pi\cdot \omega = \frac{\pi}{2} \pm 2\pi\cdot i -\frac{\pi}{4}\cdot \omega

\frac{3\pi}{4}\cdot \omega = \frac{\pi}{2}\pm \pi\cdot i

\omega = \frac{2}{3} \pm \frac{4\cdot i}{3}, i\in \mathbb{Z} \blacksquare

By (2c):

-\pi\cdot \left(\frac{2}{3} \pm \frac{4\cdot i}{3}\right) + \phi =\pm \pi\cdot i

-\frac{2\pi}{3} \mp \frac{4\pi\cdot i}{3} + \phi = \pm \pi\cdot i

\phi = \frac{2\pi}{3} \pm \frac{7\pi\cdot i}{3}, i\in \mathbb{Z} \blacksquare

The equation that represents the <em>sinusoidal</em> function is x(t) = -8 + 6.5 \cdot \sin \left[\left(\frac{2}{3} \pm \frac{4\cdot i}{3}\right)\cdot t + \left(\frac{2\pi}{3} \pm \frac{7\pi \cdot i}{3}  \right)\right], i\in \mathbb{Z}. \blacksquare

To learn more on functions, we kindly invite to check this verified question: brainly.com/question/5245372

5 0
2 years ago
Other questions:
  • What is the range of possible sides for x 8.0 2.5
    12·1 answer
  • 5/8 divided by 3/2 *2/3
    13·1 answer
  • Can someone help me with this??
    5·1 answer
  • WILL MARK BRAINLIST ! Carissa also has a sink that is shaped like a half sphere. The sink has a volume of 20003π in3. One day th
    5·1 answer
  • Which expression is equivalent to the given expression? 17x−32x x(17−32) x(32−17) 17x(1−32) 17(x−32)
    15·1 answer
  • Store
    6·2 answers
  • How can you write the equation for a linear function if you
    7·1 answer
  • Find the output values of the exponential function g(x) = 4,096x for x = 0, 0.25, 0.50, 0.75, and 1.
    7·2 answers
  • Can someone check this one for me , thank you!
    15·1 answer
  • Solve the equation for c<br> M+3c=8
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!