Answer:
The solution of |3x-9|≤15 is [-2;8] and the solution |2x-3|≥5 of is (-∞,2] ∪ [8,∞)
Step-by-step explanation:
When solving absolute value inequalities, there are two cases to consider.
Case 1: The expression within the absolute value symbols is positive.
Case 2: The expression within the absolute value symbols is negative.
The solution is the intersection of the solutions of these two cases.
In other words, for any real numbers a and b,
- if |a|> b then a>b or a<-b
- if |a|< b then a<b or a>-b
So, being |3x-9|≤15
Solving: 3x-9 ≤ 15
3x ≤15 + 9
3x ≤24
x ≤24÷3
x≤8
or 3x-9 ≥ -15
3x ≥-15 +9
3x ≥-6
x ≥ (-6)÷3
x ≥ -2
The solution is made up of all the intervals that make the inequality true. Expressing the solution as an interval: [-2;8]
So, being |2x-3|≥5
Solving: 2x-3 ≥ 5
2x ≥ 5 + 3
2x ≥8
x ≥8÷2
x≥8
or 2x-3 ≤ -5
2x ≤-5 +3
2x ≤-2
x ≤ (-2)÷2
x ≤ -2
Expressing the solution as an interval: (-∞,2] ∪ [8,∞)
Answer:
- x = ±√3, and they are actual solutions
- x = 3, but it is an extraneous solution
Step-by-step explanation:
The method often recommended for solving an equation of this sort is to multiply by the product of the denominators, then solve the resulting polynomial equation. When you do that, you get ...
... x^2(6x -18) = (2x -6)(9)
... 6x^2(x -3) -18(x -3) = 0
...6(x -3)(x^2 -3) = 0
... x = 3, x = ±√3
_____
Alternatively, you can subtract the right side of the equation and collect terms to get ...
... x^2/(2(x -3)) - 9/(6(x -3)) = 0
... (1/2)(x^2 -3)/(x -3) = 0
Here, the solution will be values of x that make the numerator zero:
... x = ±√3
_____
So, the actual solutions are x = ±3, and x = 3 is an extraneous solution. The value x=3 is actually excluded from the domain of the original equation, because the equation is undefined at that point.
_____
<em>Comment on the graph</em>
For the graph, we have rewritten the equation so it is of the form f(x)=0. The graphing program is able to highlight zero crossings, so this is a convenient form. When the equation is multiplied as described above, the resulting cubic has an extra zero-crossing at x=3 (blue curve). This is the extraneous solution.
Answer:
$1683.50
Step-by-step explanation:
You are expected to know that a "mill" is one thousandth of a dollar. In this context, it is the amount of tax on one dollar of assessed valuation. So, the tax amount is found by multiplying the valuation by 18.5/1000:
tax = 0.0185 · $91,000 = $1683.50