Answer:
Step-by-step explanation:
For Mia:
distance,d = 100 yard
time, t = 2 min 33 sec = 153 s
Speed = distance / time
speed = 100 / 153 = 0.65 yard/s
For Larisa:
distance, d = 350 yard
time, t = 5 min 18 sec = 318 s
speed = 350 / 318 = 1.1 yard/s
So, the speed of Larisa is more than the speed of Mia.
Answer:
32.78
Step-by-step explanation:
Assuming that we have two right triangles joined together, with one having adjacent side a, with a side of 12 ft opposite reference angle 30°, and the other one having adjacent side b, with a side of 12 ft opposite reference angle 45°. Thus, a + b = length of AC.
Let's find a and b.
Finding a:
Reference angle = 30°
Opp = 12 ft
Adj = a
Using trigonometric ratio formula, we have:
tan(30) = 12/a
Multiply both sides by a
a*tan(30) = 12
Divide both sides by tan(30)
a = 12/tan(30)
a = 20.78 (nearest hundredth)
Finding b:
Reference angle = 45°
Opp = 12 ft
Adj = b
Using trigonometric ratio formula, we have:
tan(45) = 12/b
Multiply both sides by a
b*tan(45) = 12
Divide both sides by tan(45)
b = 12/tan(45)
a = 12
Length of AC = 20.78 + 12 = 32.78
Here is a photo of how to solve it
D is halfway between A and B
so the coordinates of D are (2,2)
E is halfway between A and C so the coordinates of E are (-1,1)
now you need to find the gradient/slope of DE and BC using the formula:

<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>D</u><u>E</u><u>:</u><u> </u></h3>
SUB IN COORDINATES OF D AND E

therefore the gradient of DE is 1/3.
<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>B</u><u>C</u><u>:</u></h3>
<em>S</em><em>U</em><em>B</em><em> </em><em>I</em><em>N</em><em> </em><em>C</em><em>O</em><em>O</em><em>R</em><em>D</em><em>I</em><em>N</em><em>A</em><em>T</em><em>E</em><em>S</em><em> </em><em>O</em><em>F</em><em> </em><em>B</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>C</em>
<em>
</em>
therefore the gradient of BC is -2/-6 which simplifies to 1/3.
<h3>
therefore, BC and DE are parallel as they both have a gradient/slope of 1/3 and parallel lines have the same gradient</h3>
Step-by-step explanation:
Hey, there!!
Here, one point is A(10,8) and P(8,5) is the midpoint.
Let B(x,y) be the another end point.
Now,
Using midpoint formulae,


Since they are equal,equating with their corresponding elements we get,

or, 16 = 10 + x
or, x=16-10
Therefore, x = 6
Now,

or, 10 = 8 + y
or, y = 2
Therefore, The coordinates of another point are B(6,2)
<em><u>Hope it helps</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>