Answer:
the water cycle how water evaporates from the surface of the earth, rises into the atmosphere, cools and condenses into rain or snow in clouds, and falls again to the surface as precipitation.
the series of processes by which carbon compounds are interconverted in the environment, involving the incorporation of carbon dioxide into living tissue by photosynthesis and its return to the atmosphere through respiration, the decay of dead organisms, and the burning of fossil fuels.
The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmosphere, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biological and physical processes.
Answer:
a. plant height.
Explanation:
As you can see in the diagram the plant heights are varied.
Your answer is C the objects should attract to each other due to Newton's laws.
You can reduce the levels of matter pollution by reducing the amount of particulate matter produced through smoke and by reducing vehicle emissions. Reduce the amount of particulate matter produced through any types of smoke.
Answer and Explanation:
The steps of the sliding filament theory are:
Muscle activation: breakdown of energy (ATP) by myosin.
Before contraction begins, myosin is only associated with a molecule of energy (ATP), which myosin breaks down into its component molecules (ADP + P) causing myosin to change shape.
Muscle contraction: cross-bridge formation
The shape change allows myosin to bind an adjacent actin, creating a cross-bridge.
Recharging: power (pulling) stroke
The cross-bridge formation causes myosin to release ADP+P, change shape, and to pull (slide) actin closer to the center of the myosin molecule.
Relaxaction: cross-bridge detachment
The completion of the pulling stroke further changes the shape of myosin. This allows myosin and ATP to bind, which causes myosin to release actin, destroying the cross-bridge. The cycle is now ready to begin again.
The repeated cycling through these steps generates force (i.e., step 2: cross-bridge formation) and changes in muscle length (i.e., step 3: power stroke), which are necessary to muscle contraction.