X best represents
the width must be x so that the length can be 12+x meaning that the length is greater than length by 12
Is there supposed to be a graph or another picture? I do not see anything.
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The first equation is 
The second equation is 
Generally the first point of intersection of the first and second equation is x = 0
Generally the obtain the second point of intersection of the two equation we equate the two equations
So
=> 
=> 
=> 
Generally the from washer method we have
![V(x) = \int\limits^4_0 {\pi [(H(x))^2 - (G(x))^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B%28H%28x%29%29%5E2%20-%20%28G%28x%29%29%5E2%5D%7D%20%5C%2C%20dx)
So

and

So
![V(x) = \int\limits^4_0 {\pi [(16\sqrt{x})^2 - (4x)^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B%2816%5Csqrt%7Bx%7D%29%5E2%20-%20%284x%29%5E2%5D%7D%20%5C%2C%20dx)
=> ![V(x) = \int\limits^4_0 {\pi [256x - 16x^2]} \, dx](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cint%5Climits%5E4_0%20%7B%5Cpi%20%5B256x%20-%2016x%5E2%5D%7D%20%5C%2C%20dx)
=>![V(x) = \pi [256 \frac{x^2}{2} - 16 \frac{x^3}{3} ]|\left 4} \atop 0}} \right.](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cpi%20%5B256%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20-%2016%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%5D%7C%5Cleft%204%7D%20%5Catop%200%7D%7D%20%5Cright.)
=> ![V(x) = \pi [256 * \frac{ 4^2}{2} - 16 * \frac{4^3}{3} ]](https://tex.z-dn.net/?f=V%28x%29%20%3D%20%20%5Cpi%20%5B256%20%2A%20%5Cfrac%7B%204%5E2%7D%7B2%7D%20%20-%2016%20%2A%20%5Cfrac%7B4%5E3%7D%7B3%7D%20%5D)
=> 
Answer: x = 5, -5
Step-by-step explanation:
Solve using the quadratic formula.
Answer:
The exponential parent function with base two is
f(x)=2^x
where x∈(-inf,inf).
when x-> -inf, f(x)-> 0
similarly, when x-> inf, f(x)-> inf
so the range of f(x) is (0,+inf).
Step-by-step explanation: