Answer:
in 90 days
Step-by-step explanation:
you find the lcm of 9 and 15
One way to approach this would be to express 125^2 as (125)(125).
Note also that 125^(4^3) = 125^(1 + 1/3) = (125)(5)
Therefore, the given expression boils down to
(125)(125) 125
--------------- = ------- = 25
5 (125) 5
There are other ways in which you could reduce the given expression.
-12 ÷ 3 ×(-8 + (-4)^2 -6)+2
Order of operations (PEMDAS)
= -4 × (-8 + 16 - 6) + 2
= -4 × 2 + 2
= -8 + 2
= -6
Answer
-6
Answer:
(10,5)
Step-by-step explanation:
●x+(-3)=7
x=7+3
x=10
●3x+4y=-10
3(-3y)+4y=-10
-6y+4y=-10
-2y=-10
y=5
Answer:
<h3>Each of the given matrix equations does not represent this system of equations.</h3>
Step-by-step explanation:

![\left\{\begin{array}{ccc}2x-2y=3\\-5x+y=14\end{array}\right\\\\\text{The first matrix is the matrix of coefficients at x and y.}\\\\\left[\begin{array}{ccc}a_1&b_1\\a_2&b_2\end{array}\right] \Rightarrow\left[\begin{array}{ccc}2&-2\\-5&1\end{array}\right]\\\\\text{The second matrix is the matrix:}\\\\\left[\begin{array}{ccc}x\\y\end{array}\right]\\\\\text{The third matrix is the matrix of numbers from the right side of the equation.}\\\\\left[\begin{array}{ccc}c_1\\c_2\end{array}\right]\Rightarrow\left[\begin{array}{ccc}3\\14\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bccc%7D2x-2y%3D3%5C%5C-5x%2By%3D14%5Cend%7Barray%7D%5Cright%5C%5C%5C%5C%5Ctext%7BThe%20first%20matrix%20is%20the%20matrix%20of%20coefficients%20at%20x%20and%20y.%7D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_1%26b_1%5C%5Ca_2%26b_2%5Cend%7Barray%7D%5Cright%5D%20%5CRightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-2%5C%5C-5%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Ctext%7BThe%20second%20matrix%20is%20the%20matrix%3A%7D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Ctext%7BThe%20third%20matrix%20is%20the%20matrix%20of%20numbers%20from%20the%20right%20side%20of%20the%20equation.%7D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dc_1%5C%5Cc_2%5Cend%7Barray%7D%5Cright%5D%5CRightarrow%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C14%5Cend%7Barray%7D%5Cright%5D)
![\text{Therefore we have:}\\\\\left[\begin{array}{ccc}2&-2\\-5&1\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}3\\14\end{array}\right]](https://tex.z-dn.net/?f=%5Ctext%7BTherefore%20we%20have%3A%7D%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-2%5C%5C-5%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C14%5Cend%7Barray%7D%5Cright%5D)