At 13% significance level, there isn't enough evidence to prove the administrators to claim that the mean score for the state's eighth graders on this exam is more than 280.
<h3>How to state hypothesis conclusion?</h3>
We are given;
Sample size; n = 78
population standard deviation σ = 37
Sample Mean; x' = 280
Population mean; μ = 287
The school administrator declares that mean score is more (bigger than) 280. Thus, the hypotheses is stated as;
Null hypothesis; H₀: μ > 280
Alternative hypothesis; Hₐ: μ < 280
This is a one tail test with significance level of α = 0.13
From online tables, the critical value at α = 0.13 is z(c) = -1.13
b) Formula for the test statistic is;
z = (x- μ)/(σ/√n)
z = ((280 - 287) *√78 )/37
z = -1.67
c) From online p-value from z-score calculator, we have;
P[ z > 280 ] = 0.048
d) The value for z = -1.67 is smaller than the critical value mentioned in problem statement z(c) = - 1.13 , the z(s) is in the rejection zone. Therefore we reject H₀
e) We conclude that at 13% significance level, there isn't enough evidence to prove the administrators to claim that the mean score for the state's eighth graders on this exam is more than 280.
Read more about Hypothesis Conclusion at; brainly.com/question/15980493
#SPJ1
Answer:
6 feet
Step-by-step explanation:
Let x represent the length of "another side." Then "one side" is ...
2x -10 . . . . . . 10 feet shorter than twice another side
The sum of these two side lengths is half the perimeter, so is ...
x + (2x -10) = 14 . . . . . two sides are half the perimeter
3x = 24 . . . . . . . . . . . . add 10, collect terms
x = 8 . . . . . . . . . . . . . . .divide by the coefficient of x
(2x -10) = 2·8 -10 = 6 . . . . find "one side"
We have found "one side" to be 6 feet long, and "another side" to be 8 feet long. The shorter side is 6 feet.
The answer is A, first the question said parallel so it should have same gradient and the gradient of the equation is 2 So eliminate D and bring (3,1) in each of the last three equation, and you will find just A conformed
So,
If the number in the ten-thousandth's place is greater than or equal to 5, then round up. If not, round down.
0.1325: Note the 5. We round up.
0.1325 --> 0.133