2x^3 + 9x - 8 - (4x^2 - 15x + 7)....distribute thru the parenthesis
2x^3 + 9x - 8 - 4x^2 + 15x - 7....combine like terms
2x^3 - 4x^2 + 24x - 15 <==
Answer:
The product is:
![\left[\begin{array}{cc}15 & 14\\-1 & 9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D15%20%26%2014%5C%5C-1%20%26%209%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
For this problem you need to multiply the first row only for the two first column of the others matrix and get the desired result:
![\left[\begin{array}{ccc}1&3&1\\-2&1&0\end{array}\right] \times \left[\begin{array}{cc}2&-2\\3&5\\4&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%263%261%5C%5C-2%261%260%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-2%5C%5C3%265%5C%5C4%261%5Cend%7Barray%7D%5Cright%5D)

So the value of the element in the position
is 15

So the value of the element in the position
is 14
Then with these two values you can determinate the result matrix.
![\left[\begin{array}{cc}15 & 14\\-1 & 9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D15%20%26%2014%5C%5C-1%20%26%209%5Cend%7Barray%7D%5Cright%5D)
Let
be the volume of 20% solution,
the volume of the 60% solution. We want a total volume of 400 mL in the final mixture, so

Each mL of either solution will contribute a corresponding concentration, and in the final mixture we want the 400 mL to have a 40% concentration, which means we should also have

Solve the system and we get
.