Pat attention to the ending of the numbers. If there are an odd amount of odds, it's going to be odd. If there is an even amount of odds, it's going to be even. If there's only evens, it's only going to stay even.
The required graph is attached.
Here is the compound interest formula solved for years:
<span>Years = {log(total) -log(Principal)} ÷ log(1 + rate)
</span>Years = {log(800) - log(600)} <span>÷ log(1.025)
</span><span>Years = {2.903089987 -2.7781512504} / 0.010723865392
</span>Years = {
<span>
<span>
<span>
0.1249387366
} / </span></span></span><span><span><span>0.010723865392
</span>
</span>
</span>
Years =
<span>
<span>
<span>
11.6505319708
</span>
</span>
</span>
That's how many years it takes for the $600 to become exactly $800.00
The question specifically asks how long for the money to be MORE than $800.00?
So, if we enter 800.01 into the equation, then the answer is
Years = {log(800.01) - log(600)} <span>÷ log(1.025)
</span><span>Years = {2.9030954156 -2.7781512504} / 0.010723865392
</span>Years =
<span>
<span>
<span>
0.1249441652
</span>
</span>
</span>
/ 0.010723865392
<span>
<span>
<span>
Years = 11.6510381875
</span>
</span>
</span>
<span><span> </span></span>
Step-by-step explanation:
x(x-3)=0
x=0 or (x-3) =0
x= 0 or x =3
Answer:
1. 167.55
2. 10.77
Step-by-step explanation:
For #1 use the formula for volume of cone:
, and for #2 use the Pythagorean Theorem: 