Answer:
It would be the 2nd one
Step-by-step explanation:
The solution would be ... m = <span>√2 - 48 over 16. Have a good day :)</span>
Given that the line passes through the two points (-3,4) and (2,8)
We need to determine the equation of the line.
<u>Slope:</u>
The slope of the line can be determined using the formula,
![m=\frac{y_2-y_1}{x_2-x_1}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7By_2-y_1%7D%7Bx_2-x_1%7D)
Substituting the points (-3,4) and (2,8) in the above formula, we get;
![m=\frac{8-4}{2+3}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B8-4%7D%7B2%2B3%7D)
![m=\frac{4}{5}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B4%7D%7B5%7D)
Thus, the slope of the line is ![m=\frac{4}{5}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B4%7D%7B5%7D)
<u>Equation of the line:</u>
The equation of the line can be determined using the formula,
![y-y_1=m(x-x_1)](https://tex.z-dn.net/?f=y-y_1%3Dm%28x-x_1%29)
Substituting the point (-3,4) and
in the above formula, we have;
![y-4=\frac{4}{5}(x+3)](https://tex.z-dn.net/?f=y-4%3D%5Cfrac%7B4%7D%7B5%7D%28x%2B3%29)
![y-4=\frac{4}{5}x+\frac{12}{5}](https://tex.z-dn.net/?f=y-4%3D%5Cfrac%7B4%7D%7B5%7Dx%2B%5Cfrac%7B12%7D%7B5%7D)
![y=\frac{4}{5}x+\frac{12}{5}+4](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B4%7D%7B5%7Dx%2B%5Cfrac%7B12%7D%7B5%7D%2B4)
![y=\frac{4}{5}x+\frac{32}{5}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B4%7D%7B5%7Dx%2B%5Cfrac%7B32%7D%7B5%7D)
Thus, the equation of the line is ![y=\frac{4}{5}x+\frac{32}{5}](https://tex.z-dn.net/?f=y%3D%5Cfrac%7B4%7D%7B5%7Dx%2B%5Cfrac%7B32%7D%7B5%7D)
![y = - 12](https://tex.z-dn.net/?f=y%20%3D%20%20-%2012)
Step-by-step explanation:
![5y - 4y = - 9 - 3 \\ y = - 12](https://tex.z-dn.net/?f=5y%20-%204y%20%3D%20%20-%209%20-%203%20%5C%5C%20y%20%3D%20%20-%2012)
Answer: The answer is D
Step-by-step explanation: