The solution of the system of equations is (-3 , -2)
Step-by-step explanation:
Steps for Using Linear Combinations Method)
- Arrange the equations with like terms in columns
- Analyze the coefficients of x or y
- Add the equations and solve for the remaining variable
- Substitute the value into either equation and solve
∵ 3 x - 8 y = 7 ⇒ (1)
∵ x + 2 y = -7 ⇒ (2)
- Multiply equation (2) by 4 to make the coefficients of y are equal in
magnitude and different in sign
∴ 4 x + 8 y = -28 ⇒ (3)
Add equations (1) and (3)
∵ 3 x - 8 y = 7 ⇒ (1)
∵ 4 x + 8 y = -28 ⇒ (3)
∴ 7 x = -21
- Divide both sides by 7
∴ x = -3
Substitute the value of x in equation (2) to find y
∵ x + 2 y = -7 ⇒ (2)
∵ x = -3
∴ -3 + 2 y = -7
- Add 3 to both sides
∴ 2 y = -4
- Divide both sides by 2
∴ y = -2
The solution of the system of equations is (-3 , -2)
Learn more:
You can learn more about the system of the linear equations in brainly.com/question/13168205
#LearnwithBrainly
Answer:
Samantha has 8 quarts of milk. The ratio of quarts to gallons is 4:1. How many gallons of milk does Samantha have? x a. 1 over 32 x b. begin mathsize 16px style 1 half end style x c. 2 x d. 32
Step-by-step explanation:Samantha has 8 quarts of milk. The ratio of quarts to gallons is 4:1. How many gallons of milk does Samantha have? x a. 1 over 32 x b. begin mathsize 16px style 1 half end style x c. 2 x d. 32Samantha has 8 quarts of milk. The ratio of quarts to gallons is 4:1. How many gallons of milk does Samantha have? x a. 1 over 32 x b. begin mathsize 16px style 1 half end style x c. 2 x d. 32Samantha has 8 quarts of milk. The ratio of quarts to gallons is 4:1. How many gallons of milk does Samantha have? x a. 1 over 32 x b. begin mathsize 16px style 1 half end style x c. 2 x d. 32
Iiiiiiiiiiiiiiiiiii[ooioj09uij09uikj
Answers:
33. Angle R is 68 degrees
35. The fraction 21/2 or the decimal 10.5
36. Triangle ACG
37. Segment AB
38. The values are x = 6; y = 2
40. The value of x is x = 29
41. C) 108 degrees
42. The value of x is x = 70
43. The segment WY is 24 units long
------------------------------------------------------
Work Shown:
Problem 33)
RS = ST, means that the vertex angle is at angle S
Angle S = 44
Angle R = x, angle T = x are the base angles
R+S+T = 180
x+44+x = 180
2x+44 = 180
2x+44-44 = 180-44
2x = 136
2x/2 = 136/2
x = 68
So angle R is 68 degrees
-----------------
Problem 35)
Angle A = angle H
Angle B = angle I
Angle C = angle J
A = 97
B = 4x+4
C = J = 37
A+B+C = 180
97+4x+4+37 = 180
4x+138 = 180
4x+138-138 = 180-138
4x = 42
4x/4 = 42/4
x = 21/2
x = 10.5
-----------------
Problem 36)
GD is the median of triangle ACG. It stretches from the vertex G to point D. Point D is the midpoint of segment AC
-----------------
Problem 37)
Segment AB is an altitude of triangle ACG. It is perpendicular to line CG (extend out segment CG) and it goes through vertex A.
-----------------
Problem 38)
triangle LMN = triangle PQR
LM = PQ
MN = QR
LN = PR
Since LM = PQ, we can say 2x+3 = 5x-15. Let's solve for x
2x+3 = 5x-15
2x-5x = -15-3
-3x = -18
x = -18/(-3)
x = 6
Similarly, MN = QR, so 9 = 3y+3
Solve for y
9 = 3y+3
3y+3 = 9
3y+3-3 = 9-3
3y = 6
3y/3 = 6/3
y = 2
-----------------
Problem 40)
The remote interior angles (2x and 21) add up to the exterior angle (3x-8)
2x+21 = 3x-8
2x-3x = -8-21
-x = -29
x = 29
-----------------
Problem 41)
For any quadrilateral, the four angles always add to 360 degrees
J+K+L+M = 360
3x+45+2x+45 = 360
5x+90 = 360
5x+90-90 = 360-90
5x = 270
5x/5 = 270/5
x = 54
Use this to find L
L = 2x
L = 2*54
L = 108
-----------------
Problem 42)
The adjacent or consecutive angles are supplementary. They add to 180 degrees
K+N = 180
2x+40 = 180
2x+40-40 = 180-40
2x = 140
2x/2 = 140/2
x = 70
-----------------
Problem 43)
All sides of the rhombus are congruent, so WX = WZ.
Triangle WPZ is a right triangle (right angle at point P).
Use the pythagorean theorem to find PW
a^2+b^2 = c^2
(PW)^2+(PZ)^2 = (WZ)^2
(PW)^2+256 = 400
(PW)^2+256-256 = 400-256
(PW)^2 = 144
PW = sqrt(144)
PW = 12
WY = 2*PW
WY = 2*12
WY = 24
Answer:
See below ~
Step-by-step explanation:
<u>Finding x-intercept</u>
- Take y = 0
- 2x - 5(0) = 10
- 2x = 10
- x = 5
- x-intercept is at (5, 0)
<u>Finding y-intercept</u>
- Take x = 0
- 2(0) - 5y = 10
- -5y = 10
- y = -2
- y-intercept is at (0, -2)
<u>Graph (with points marked)</u>