If T is the midpoint of SU, then ST ≅ TU.
Therefore we have the equation:
6x = 2x + 32 <em>subtract 2x from both sides</em>
4x = 32 <em>divide both sides by 4</em>
x = 8
ST = 6x → ST = 6(8) = 48
TU = ST, therefore ST = 48
SU = ST + TU = 2ST, therefore SU = 2(48) = 96
<h3>Answer: ST = 48, TU = 48, SU = 96</h3>
Yes!! They both are equivalent.....
Answer:
Women: 448 Men: 560 Children: 1232
Step-by-step explanation:
5+4+11 = 20/2240 = 112
Women = 4 x 112 = 448
Men = 5 x 112 = 560
Children = 11 x 112 = 1232
Total = 1232 + 560 +448 = 2240
I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)