Finding the midpoint coordinates of any segment really boils down to finding the midpoints of each individual coordinate.
The x-coordinates of the two points are -12 and -8 - the number halfway between those two is -10, so that'll be the midpoint's x-coordinate. The y-coordinates are -7 and -4 - -5.5 is halfway between these two, so the y-coordinate will be 5.5.
Putting the two together, the midpoint of the segment WT has the coordinates (-10, -5.5).
Answer:
4/7
Step-by-step explanation:
Answer/Step-by-step explanation:
27.
✔️Sin 23 = opp/hyp
Sin 23 = t/34
34*sin 23 = t
t = 13.3
✔️Cos 23 = adj/hyp
Cos 23 = s/34
s = 34*cos 23
s = 31.3
28.
✔️Sin 36 = opp/hyp
Sin 36 = s/5
s = 5*sin 36
s = 2.9
✔️Cos 36 = adj/hyp
Cos 36 = r/5
r = 5*cos 36
r = 4.0
29.
✔️Sin 70 = opp/hyp
Sin 70 = w/10
w = 10*sin 70
w = 9.4
✔️Cos 70 = adj/hyp
Cos 70 = v/10
v = 10*cos 70
v = 3.4
Answer:
-5(y - 3)(y - 7)
Step-by-step explanation:
Factor -5 out of all 3 terms:
-5(y^2 - 10y + 21)
Continue the factoring:
-5(y - 3)(y - 7)
Note: when answer choices are given, kindly share them. Thank you.
Answer:
To graph this line, move one of the points to positive three on the horizontal (side to side) line and negative six on the vertical (up and down) line. To get a slope of negative 1/2 you move down one point and right two points, and you continue until you reach the edge of the graph. Then you do the opposite on the way up (up one and left two).
Hope this helps!