1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
4 years ago
14

For each equation, find the ordered pair whose x-coordinate is -4.

Mathematics
1 answer:
puteri [66]4 years ago
8 0
Plug in -4 for X and solve
You might be interested in
Find the distance between the points (3, –8) and (0, –9).
MAVERICK [17]

Answer:

a. 3.16

Step-by-step explanation:

√(x2 - x1)² + (y2 - y1)²

√[-9 - (-8)]² + (0 - 3)²

√(-1)² + (-3)²

√(1) + (9)

√(10)

= 3.16

5 0
3 years ago
Please help! Can anyone help me out with this question?
TEA [102]

Answer:

\displaystyle h'(s) = 64s + 20

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                  \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle h(s) = (-8s - 9)(-4s + 2)

<u>Step 2: Differentiate</u>

  1. [Derivative] Product Rule:                                                                               \displaystyle h'(s) = \frac{d}{ds}[(-8s - 9)](-4s + 2) + (-8s - 9)\frac{d}{ds}[(-4s + 2)]
  2. [Derivative] Basic Power Rule:                                                                       \displaystyle h'(s) = (1 \cdot -8s^{1 - 1} - 0)(-4s + 2) + (-8s - 9)(1 \cdot -4s^{1 - 1} - 0)
  3. [Derivative] Simplify:                                                                                         \displaystyle h'(s) = (-8)(-4s + 2) + (-8s - 9)(-4)
  4. [Derivative] Distribute [Distributive Property]:                                              \displaystyle h'(s) = 32s - 16 + 32s + 36
  5. [Derivative] Combine like terms:                                                                     \displaystyle h'(s) = 64s + 20

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

7 0
3 years ago
If 0 – x = -13, then x = ?
erastova [34]
X=_13 hope this helps

3 0
4 years ago
Read 2 more answers
Which equation has a slope m=2/3
Arisa [49]
Y=(2/3)x+[anything] cause the thing before x is slope
3 0
4 years ago
You and a roommate are hosting a party. You invite 10 other pairs of roommates. During the party you poll everyone at the party
solong [7]
The orders of pairs are 23
5 0
3 years ago
Other questions:
  • Anyone know the answer to anyone of these 3 questions
    9·1 answer
  • 3 is subtracted from the cube of a number.​
    5·2 answers
  • Complete the table by converting each decimal to a fraction.
    5·2 answers
  • Madison is saving nickels. She saves 1 nickel the first day, 2 nickels the second day, 3 nickels the third day, and so on for 15
    12·1 answer
  • In our school, 3/5 of the student body have brown eyes. If there are 350
    7·1 answer
  • Is the given value a solution to the equation?
    8·2 answers
  • If x + 12 = 40,<br> what is the value of x + 7<br> please help
    13·1 answer
  • 4� − 5 = −9<br> Help Me plssssss!!!!
    10·1 answer
  • Can anyone please help me?? Please?
    12·1 answer
  • 4y-1=3 what is the y - intercept
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!