Answer:
2,309.2
This could be wrong but I'm pretty sure it's right
We compute for the side lengths using the distance formula √[(x₂-x₁)²+(y₂-y₁)²].
AB = √[(-7--5)²+(4-7)²] = √13
A'B' = √[(-9--7)²+(0-3)²] = √13
BC = √[(-5--3)²+(7-4)²] = √13
B'C' = √[(-7--5)²+(3-0)²] =√13
CD = √[(-3--5)²+(4-1)²] = √13
C'D' = √[(-5--7)²+(0--3)²] = √13
DA = √[(-5--7)²+(1-4)²] = √13
D'A' = √[(-7--9)²+(-3-0)²] = √13
The two polygons are squares with the same side lengths.
But this is not enough information to support the argument that the two figures are congruent. In order for the two to be congruent, they must satisfy all conditions:
1. They have the same number of sides.
2. All the corresponding sides have equal length.
3. All the corresponding interior angles have the same measurements.
The third condition was not proven.
A I think
Step-by-step explanation:
I'm not 100% sure though
Answer:
first one is not. parallel second one is not and the third one is
Answer:
10x
Step-by-step explanation: