<span>The answer is B. 72.25 percent.
The Hardy-Weinberg principle can be used:</span>
<em>p² + 2pq + q² = 1 </em>and <em>p + q = 1</em>
where <em>p</em> and <em>q</em> are the frequencies of the alleles, and <em>p²</em>, <em>q²</em> and <em>2pq</em> are the frequencies of the genotypes.
<span>The <em>p</em> allele (<em>q</em>) is found in 15% of the population:
q = 15% = 15/100
Thus, q = </span><span>0.15
To calculate the <em>P</em> allele frequency (<em>p</em>), the formula <em>p + q = 1</em> can be used:
If p + q = 1, then p = 1 - q
p = 1 - 0.15
Thus, </span><span>p = 0.85
Knowing the frequency of the <em>P</em> allele (<em>p</em>), it is easy to determine the frequency of the <em>PP </em>genotype (<em>p²</em>):
p² = 0.85² = 0.7225
Expressed in percentage, p² = 72.25%.</span>
I believe they cannot start with big trees and bushes because the there is not enough nutrients in the soil, so instead pioneer species pave the way for primary succession.
Answer:
It is made up of protons and neutrons
External respiration (correct answer) involves the exchange of oxygen and carbon dioxide within the environment.
The exchange of wastes through the skin is just called excretion by sweating.
There is no exchange of nutrients that occur in the lungs but rather absorption of nutrients is the function of the gastrointestinal tract.
The exchange of oxygen and carbon dioxide within the cell is called cellular respiration and involves carrying oxygen from the blood to the cell then the cell uses it as the final electron acceptor in the electron transport chain. The metabolic wastes of the cell, primarily carbon dioxide, goes now to the bloodstream to be exchanged for oxygen in the lungs.
Answer:
It is Isotonic to the fish egg solution
Explanation:
It is Isotonic because Isotonic is a solution that has the same solute concentration with another solution I.e the amount of solute in one solution is the same with the other. This slow the free flow of solutes in equal part through the semipermeable membrane from one solution to the other.