1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
4 years ago
10

Convert 900 cm/hour into cm per min

Mathematics
2 answers:
balu736 [363]4 years ago
8 0

Answer: 15 cm/min

Step-by-step explanation:

900÷60

60=hour

baherus [9]4 years ago
6 0

1 hour is 60 minutes.

900 cm/hr = 900 cm per 60 minutes.

To find cm per minute, divide total cm by 60 minutes:

900 / 60 = 15 cm/min.

You might be interested in
A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2
Alika [10]

As the ladder is pulled away from the wall, the area and the height with the

wall are decreasing while the angle formed with the wall increases.

The correct response are;

  • (a) The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

<u />

  • (b) The rate the area formed by the ladder is changing is approximately <u>-75.29 ft.²/sec</u>

<u />

  • (c) The rate at which the angle formed with the wall is changing is approximately <u>0.286 rad/sec</u>.

Reasons:

The given parameter are;

Length of the ladder, <em>l</em> = 25 feet

Rate at which the base of the ladder is pulled, \displaystyle \frac{dx}{dt} = 2 feet per second

(a) Let <em>y</em> represent the height of the ladder on the wall, by chain rule of differentiation, we have;

\displaystyle \frac{dy}{dt} = \mathbf{\frac{dy}{dx} \times \frac{dx}{dt}}

25² = x² + y²

y = √(25² - x²)

\displaystyle \frac{dy}{dx} = \frac{d}{dx} \sqrt{25^2 - x^2} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}

Which gives;

\displaystyle \frac{dy}{dt} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times \frac{dx}{dt} =  \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2

\displaystyle \frac{dy}{dt} =  \mathbf{ \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2}

When x = 15, we get;

\displaystyle \frac{dy}{dt} =   \frac{15 \times \sqrt{625-15^2}  }{15^2- 625}\times2 = \mathbf{-1.5}

The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

When x = 20, we get;

\displaystyle \frac{dy}{dt} =   \frac{20 \times \sqrt{625-20^2}  }{20^2- 625}\times2 = -\frac{8}{3} = -2.\overline 6

The velocity of the top of the ladder = \underline{-2.\overline{6} \ m/s \ downwards}

When x = 24, we get;

\displaystyle \frac{dy}{dt} =   \frac{24 \times \sqrt{625-24^2}  }{24^2- 625}\times2 = \mathbf{-\frac{48}{7}}  \approx -6.86

The velocity of the top of the ladder ≈ <u>-6.86 m/s downwards</u>

(b) \displaystyle The \ area\ of \ the \ triangle, \ A =\mathbf{\frac{1}{2} \cdot x \cdot y}

Therefore;

\displaystyle The \ area\ A =\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}

\displaystyle \frac{dA}{dx} = \frac{d}{dx} \left (\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}\right) = \mathbf{\frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250}}

\displaystyle \frac{dA}{dt} = \mathbf{ \frac{dA}{dx} \times \frac{dx}{dt}}

Therefore;

\displaystyle \frac{dA}{dt} =  \frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250} \times 2

When the ladder is 24 feet from the wall, we have;

x = 24

\displaystyle \frac{dA}{dt} =  \frac{(2 \times 24^2- 625)\cdot \sqrt{625-24^2} }{2\times 24^2 - 1250} \times 2 \approx \mathbf{ -75.29}

The rate the area formed by the ladder is changing, \displaystyle \frac{dA}{dt} ≈ <u>-75.29 ft.²/sec</u>

(c) From trigonometric ratios, we have;

\displaystyle sin(\theta) = \frac{x}{25}

\displaystyle \theta = \mathbf{arcsin \left(\frac{x}{25} \right)}

\displaystyle \frac{d \theta}{dt}  = \frac{d \theta}{dx} \times \frac{dx}{dt}

\displaystyle\frac{d \theta}{dx}  = \frac{d}{dx} \left(arcsin \left(\frac{x}{25} \right) \right) = \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625}}

Which gives;

\displaystyle \frac{d \theta}{dt}  =  -\frac{\sqrt{625-x^2} }{x^2 - 625}\times \frac{dx}{dt}= \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625} \times 2}

When x = 24 feet, we have;

\displaystyle \frac{d \theta}{dt} =  -\frac{\sqrt{625-24^2} }{24^2 - 625} \times 2 \approx \mathbf{ 0.286}

Rate at which the angle between the ladder and the wall of the house is changing when the base of the ladder is 24 feet from the wall is \displaystyle \frac{d \theta}{dt} ≈ <u>0.286 rad/sec</u>

Learn more about the chain rule of differentiation here:

brainly.com/question/20433457

3 0
3 years ago
Consider the system of inequalities and its graph.
eimsori [14]

Answer:

Its 2

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
An important tool in archeological research is radiocarbon dating, developed by the American chemist Willard F. Libby.3 This is
Radda [10]

Answer:

Q(t) = Q_o*e^(-0.000120968*t)

Step-by-step explanation:

Given:

- The ODE of the life of Carbon-14:

                                       Q' = -r*Q

- The initial conditions Q(0) = Q_o

- Carbon isotope reaches its half life in t = 5730 yrs

Find:

The expression for Q(t).

Solution:

- Assuming Q(t) satisfies:

                                       Q' = -r*Q

- Separate variables:

                                      dQ / Q = -r .dt

- Integrate both sides:

                                       Ln(Q) = -r*t + C

- Make the relation for Q:

                                       Q = C*e^(-r*t)

- Using initial conditions given:

                                       Q(0) = Q_o

                                       Q_o = C*e^(-r*0)

                                      C = Q_o    

- The relation is:

                                       Q(t) = Q_o*e^(-r*t)

- We are also given that the half life of carbon is t = 5730 years:

                                       Q_o / 2 = Q_o*e^(-5730*r)

                                        -Ln(0.5) = 5730*r

                                        r = -Ln(0.5)/5730

                                        r = 0.000120968          

- Hence, our expression for Q(t) would be:

                                       Q(t) = Q_o*e^(-0.000120968*t)                                    

7 0
3 years ago
Mercury is about 57,000,000 from the sun,whereas neptune is about 4.5 x 10 to the 9th power km from the sun. What is the differe
slavikrds [6]

Answer:

4,443,000,000 or 4.443 * 10^9 km.

Step-by-step explanation:

Neptune's distance from the sun = 4.5 * 10^9

=  4,500,000,000 km.

The required difference is

4,500,000,000 - 57,000,000

= 4,443,000,000  or 4.443 * 10^9.

7 0
4 years ago
A group of preschoolers has 23 circles and 19 girls what is the the ratio of girls to boys
Artyom0805 [142]

Answer:

my 2 cents would be 23:19

4 0
4 years ago
Other questions:
  • A baker makes 38 cookies in 2 hours at this rate how many cookies can the baker make in 9 hours
    7·1 answer
  • Which equations are true?
    9·1 answer
  • Function (A or B) has the greater initial value because the initial value for function A is _ and the initial value for Function
    6·1 answer
  • PLEASE SOME ONE HELP ME IM DYING!!!!!
    10·1 answer
  • Hey ya'll, my assignment asked me.....Evan spent 20 hours doing homework last week. This week he spent 25 hours doing homework.
    5·2 answers
  • What is the slope of this ​
    5·1 answer
  • Ayúdeme es para mañana
    7·1 answer
  • Plz heeeeeeeellllllllllllllllpppppppp and explain.
    12·1 answer
  • Use the table of values to explain if d and y are proportional relationship
    15·1 answer
  • Help me with this asap right now please i will mark brainlest
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!