1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Thepotemich [5.8K]
4 years ago
10

Which equation is represented by the table?

Mathematics
1 answer:
Hoochie [10]4 years ago
8 0
You only need to check x=0, y=-5 to find the correct choice is ...
  y = |x| - 5
You might be interested in
A) Compute the sum
avanturin [10]
A)

To calculate this sum, we could use trigonometric identity:

\arcsin(x)-\arcsin(y)=\arcsin\left(x\sqrt{1-y^2}-y\sqrt{1-x^2}\right)

We have:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k+1-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{(k+1)^2-1}}{k(k+1)}-\dfrac{\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\dfrac{\sqrt{(k+1)^2-1}}{\sqrt{(k+1)^2}}-\dfrac{1}{k+1}\cdot\dfrac{\sqrt{k^2-1}}{\sqrt{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{\dfrac{(k+1)&^2-1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{\dfrac{k^2-1}{k^2}}\right]=\\\\\\=
\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\dfrac{1}{(k+1)^2}}-\dfrac{1}{k+1}\cdot\sqrt{1-\dfrac{1}{k^2}}\right]=\\\\\\


=\sum\limits_{k=1}^n\arcsin\left[\dfrac{1}{k}\cdot\sqrt{1-\left(\dfrac{1}{k+1}\right)^2}-\dfrac{1}{k+1}\cdot\sqrt{1-\left(\dfrac{1}{k}\right)^2}\right]=\\\\\\=
\sum\limits_{k=1}^n\left[\arcsin\left(\dfrac{1}{k}\right)-\arcsin\left(\dfrac{1}{k+1}\right)\right]=\\\\\\

=\bigg[\arcsin(1)-\arcsin\left(\frac{1}{2}\right)\bigg]+\bigg[\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)\bigg]+\\\\\\+
\bigg[\arcsin\left(\frac{1}{3}\right)-\arcsin\left(\frac{1}{4}\right)\bigg]+\dots+
\bigg[\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)\bigg]=\\\\\\

=\arcsin(1)-\arcsin\left(\frac{1}{2}\right)+\arcsin\left(\frac{1}{2}\right)-\arcsin\left(\frac{1}{3}\right)+\arcsin\left(\frac{1}{3}\right)-\\\\\\-\arcsin\left(\frac{1}{4}\right)+\dots+\arcsin\left(\frac{1}{n}\right)-\arcsin\left(\frac{1}{n+1}\right)=\\\\\\=
\arcsin(1)-\arcsin\left(\frac{1}{n+1}\right)=\dfrac{\pi}{2}-\arcsin\left(\frac{1}{n+1}\right)

So the answer is:

\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)}

B)

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\sum\limits_{k=1}^n\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\\\\\\=
\lim\limits_{n\to\infty}\Bigg(\dfrac{\pi}{2}-\arcsin\left(\dfrac{1}{n+1}\right)\Bigg)=\dfrac{\pi}{2}-\lim\limits_{n\to\infty}\arcsin\left(\dfrac{1}{n+1}\right)=\\\\\\=
\Bigg\{\dfrac{1}{n+1}\xrightarrow{n\to\infty}0\Bigg\}=\dfrac{\pi}{2}-\arcsin(0)=\dfrac{\pi}{2}-0=\dfrac{\pi}{2}

So we prove that:

\sum\limits_{k=1}^\infty\arcsin\left[\dfrac{\sqrt{k^2+2k}-\sqrt{k^2-1}}{k(k+1)}\right]=\dfrac{\pi}{2}
7 0
3 years ago
The additive inverse of 5/9 is​
adelina 88 [10]
I think that it’s -5 (:
5 0
3 years ago
Read 2 more answers
The<br> 10. A jet flies at an altitude of 52,800 feet.<br> What is the height of the jet in miles?
aliya0001 [1]

Answer:

The Answer is 10 Miles.

Step-by-step explanation:

The jet is 52,800 feet high.

There are 5,280 feet in a mile.

Divide 52,800 by 5280 to find miles:

52800 / 5280 = 10 Miles.

Hope this Helps!  Have an Awesome Day!! :-)

5 0
3 years ago
Read 2 more answers
Ustin is interested in buying a digital phone. he visited 20 stores at random and recorded the price of the particular phone he
Mekhanik [1.2K]
<span>(a) 2.09302406 (b) Lower limit of 95% confidence interval = 185.85 (a) To get the t-score, first determine the number of degrees of freedom you have. That's simply the number of samples minus 1, so in this case we have 19 degrees of freedom. Then calculate (1-0.95)/2 = 0.05/2 = 0.025 which is the size of the tail for the confidence interval you want. Finally, lookup in a T-Distribution Table for the 19 degrees of freedom and tail size. The value looked up will be 2.09302406. (b) Once you have the t-score, to calculate your desired interval, calculate the following: V = T*SD/sqrt(n) where V = Variance T = T-score SD = Standard deviation n = number of samples So let's plug in the values and calculate V V = T*SD/sqrt(n) V = 2.09302406*21.02/sqrt(20) V = 2.09302406*21.02/4.472135955 V = 43.99536574/4.472135955 V = 9.837662849 Your 95% confidence interval is now the mean +/- V. So lower limit = 195.69 - 9.84 = 185.85 upper limit = 195.69 + 9.84 = 205.53</span>
5 0
3 years ago
Cassidy's goal is to raise more than $75 for charity. She has already raised $6. Now she is selling cupcakes for $3 each to reac
victus00 [196]
The first statement is false, the second statement is true :)
5 0
3 years ago
Read 2 more answers
Other questions:
  • The table shows the probabilities of winning or losing when the team is playing away or is playing at home.
    9·2 answers
  • .3333333333 is equivalent to<br> which fraction: 3/33 or 3/1 or<br> 33/33 or 1/3
    14·1 answer
  • Suppose a candy connoisseur opened a random bag of candy and found that 15 of the 62 candies were red. Using this information, d
    12·1 answer
  • The roof of a house is the shape of an isosceles right triangles as shown in the diagram below. What is the height of the roof ,
    6·2 answers
  • 5/6 ? 4/5<br><br> A.&lt;<br> B.&gt;<br> C.=
    8·1 answer
  • The graph shows the distance a ball has traveled x seconds after it was thrown. What is the average speed between 2 seconds and
    14·2 answers
  • Please help!<br> 3(3w−4)=−20<br> w= ???
    11·1 answer
  • At a department store kendra has a debt greater than $25.00 which could be kendras balance? A-$32.00 B-$22.00 C -$19.00 D-$11.00
    9·2 answers
  • Write 24 as a product of prime factors.
    5·1 answer
  • HELP ME OUT PLS AND HAVE A SHORT ANSWER PLS!!!!!!!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!