Answer:
Perimeter of the parallelogram = 26.64 units
Step-by-step explanation:
The perimeter of parallelogram = 2(a + b)
Here a = KJ = 7 units.
b = HK
We need to find the HK using the distance formula.
Distance formula = ![\sqrt{(x2 - x1)^2 + (y2 - y1)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28x2%20-%20x1%29%5E2%20%2B%20%28y2%20-%20y1%29%5E2%7D)
H = (-4, 3) and k = (-2, -3)
Now plug in x1 = -4, y1 =3, x2 = -2, y2 = -3 in the distance formula
HK = ![\sqrt{(-2 -(-4))^2 + (-3 - 3)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-2%20-%28-4%29%29%5E2%20%2B%20%28-3%20-%203%29%5E2%7D)
= ![\sqrt{(-2 +4)^2 + (-6)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%28-2%20%2B4%29%5E2%20%2B%20%28-6%29%5E2%7D)
= ![\sqrt{4 + 36}](https://tex.z-dn.net/?f=%5Csqrt%7B4%20%2B%2036%7D)
= ![\sqrt{40}](https://tex.z-dn.net/?f=%5Csqrt%7B40%7D)
HK = b = 6.32 units
Now plug in a = 7 and b = 6.32 in the perimeter formula, we get
Perimeter = 2(7 + 6.32)
= 2(13.32)
= 26.64 units
Thank you.