1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
12

1.03 The constitution

Advanced Placement (AP)
1 answer:
iris [78.8K]3 years ago
6 0

Answer:

The Constitution of the United States, approved in 1787 by the Constitutional Convention of Philadelphia, is the supreme law of the United States, which defines the political organization of the nation, the structure of the federal government and, based on its amendments, the individual rights of its citizens.

This Constitution originally consisted of 7 articles of a programmatic nature, which define the roles and structure of the government. In addition, 27 amendments were subsequently added, guaranteeing certain civil rights to American citizens. An important role is held by the first 10 amendments, which form a normative body called the Bill of Rights, with the fundamental civil rights of Americans.

You might be interested in
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
Which one of the following is an example of a formal region?
Kamila [148]

I think it's (A)!! "The US Corn Belt."

7 0
3 years ago
What did the computer eat on the moon? btw its a riddle
KATRIN_1 [288]

Answer:

Space Bar

Explanation:

5 0
3 years ago
Read 2 more answers
[I REALLY NEED HELP]
Schach [20]

d.)economic resources

4 0
3 years ago
Why did sectional tensions strengthen during the 1850s
Annette [7]
I would say that the sectional tensions strengthened during the 1850s mostly because of slavery. As you already know, historically, the North and the South of US were very different. The North went out of its way to abolish slavery, whereas the South was pro-slavery. This is what created many tensions, and later on, even more wars between these two sections. 
7 0
3 years ago
Other questions:
  • Eli was in a serious car accident and fell into a coma for a few days. When he woke up, he was able toremember his childhood, hi
    6·1 answer
  • Miki and Vijay were both riding their bikes to Pistachio Pete's Ice cream shop. When Miki was 1000 yards from Pistachio pete's,
    15·1 answer
  • Based on what you learned in the article, describe how young adults manage risk taking and decision making. (Site 1)
    9·2 answers
  • Does anybody know a good catchy title for a gym poster?
    6·2 answers
  • Explain one way in which imperialism in state run colonies was similar to imperialism in settler colonies in the period 1750-190
    12·1 answer
  • Match the letters to the numbers please. Put it down below the comments and please do not put any links please. This is for an e
    12·1 answer
  • AP Computer Science Principles QUESTIONS (MAX POINTS)
    11·1 answer
  • If u want points here u go
    10·2 answers
  • What did the surpreme court declare unconstitutional in citizen united?
    13·1 answer
  • A position within society that is based on social and economic
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!