5m+2(m+8)+3
5m+2m+16+3
7m+19
(A) For x representing the cost of one of Tanya's items, her total purchase cost 5x. The cost of one of Tony's items is then (x-1.75) and the total of Tony's purchase is 6(x-1.75). The problem statement tells us these are equal values. Your equation is ...
... 5x = 6(x -1.75)
(B) Subtract 5x, simplify and add the opposite of the constant.
... 5x -5x = 6x -6·1.75 -5x
... 0 = x -10.50
... 10.50 = x
(C) 5x = 5·10.50 = 52.50
... 6(x -1.75) = 6·8.75 = 52.50 . . . . . the two purchases are the same value
(D) The individual cost of Tanya's iterms was $10.50. The individual cost of Tony's items was $8.75.
Answer:
a. P(x = 0 | λ = 1.2) = 0.301
b. P(x ≥ 8 | λ = 1.2) = 0.000
c. P(x > 5 | λ = 1.2) = 0.002
Step-by-step explanation:
If the number of defects per carton is Poisson distributed, with parameter 1.2 pens/carton, we can model the probability of k defects as:

a. What is the probability of selecting a carton and finding no defective pens?
This happens for k=0, so the probability is:

b. What is the probability of finding eight or more defective pens in a carton?
This can be calculated as one minus the probablity of having 7 or less defective pens.



c. Suppose a purchaser of these pens will quit buying from the company if a carton contains more than five defective pens. What is the probability that a carton contains more than five defective pens?
We can calculate this as we did the previous question, but for k=5.

Answer:
3/5=18/30
Step-by-step explanation:
3/5*6/6=18/30