Answer: The required matrix is
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
Step-by-step explanation: We are given to find the transition matrix from the bases B to B' as given below :
B = {(-1,2), (3, 4)) and B' = {(1, 0), (0, 1)}.
Let us consider two real numbers a, b such that

Again, let us consider reals c and d such that

Therefore, the transition matrix is given by
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
Thus, the required matrix is
![T=\left[\begin{array}{ccc}-1&3\\2&4\end{array}\right] .](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%263%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20.)
Answer:
9/16
Step-by-step explanation:
First we need to know that the dimensions ratio, the surface area ratio and the volume ratio have the following relation:
volume ratio = dimension ratio ^3
surface area ratio = dimension ratio ^2
The volume ratio between small prism and the large prism is 27 / 64.
To find the dimensions ratio, we need to take the cubic root of the volume scale:
dimension ratio = 3√(27/64) = 3/4
Now, to find the surface area ratio, we just need to make the square of the dimension ratio:
surface area ratio = (3/4)^2 = 9/16
Answer:
x≥3 but without the line under the symbol
Step-by-step explanation: