Answer:
The probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes <em>n</em> > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

Let <em>p</em> = the proportion of keypads that pass inspection at a cell phone assembly plant.
The probability that a randomly selected cell phone keypad passes the inspection is, <em>p</em> = 0.77.
A random sample of <em>n</em> = 111 keypads is analyzed.
Then the sampling distribution of
is:

Compute the probability that the proportion of passed keypads is between 0.72 and 0.80 as follows:


Thus, the probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.