A perfect square trinomial is found in the expression where both the leading coefficients and the constant are both perfect squares. That only is the case with the third choice above. 16 is a perfect square of 4 times 4, and 9 is a perfect square of 3 times 3. We need to set it up into its perfect square factors and FOIL to make sure, so let's do that. Not only is 16 a perfect square in that first term, but so is x-squared. Not only is 9 a perfect square in the third term, but so is y-squared. So our factors will look like this:
(4x + 3y)(4x + 3y). FOIL that out to see that it does in fact give you back the polynomial that is the third choice down.
Answer
5h=15
Step-by-step explanation:
h = 7 - 4 = 3 therefore 5(3)=15
SOLUTION:
Case: Trigonometry
Method:
Let the distance between the Sun and the Earth be 'z'
The relationship between x, y and z is:

Final answer:
In sentence,
The distance between the Sun and the Earth is the product of the distance between the Earth and the moon and the cotangent of the angle x formed using the lines from the Earth and the moon.
Answer:
28
Step-by-step explanation:
Answer:
(1, 4) and (1,3), because they have the same x-value
Step-by-step explanation:
For a relation to be regarded as a function, there should be no two y-values assigned to an x-value. However, two different x-values can have the same y-values.
In the relation given in the equation, the ordered pairs (1,4) and (1,3), prevent the relation from being a function because, two y-values were assigned to the same x-value. x = 1, is having y = 4, and 3 respectively.
Therefore, the relation is not a function anymore if both ordered pairs are included.
<em>The ordered pairs which make the relation not to be a function are: "(1, 4) and (1,3), because they have the same x-value".</em>