Sora is the best group note taker; she meets are the criteria.
Answer:
Following are the solution to this question:
Explanation:
Assume that
will be a 12-month for the spot rate:
![\to 1.25 \% \times \frac{100}{2} \times 0.99 + \frac{(1.25\% \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{100} \times \frac{100}{2} \times 0.99 + \frac{(\frac{1.25}{100} \times \frac{100}{2}+100)}{(1+\frac{r_1}{2})^2}=98\\\\\to \frac{1.25}{2} \times 0.99 + \frac{(\frac{1.25}{2} +100)}{(1+\frac{r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 0.625 +100)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{( 100.625)}{(\frac{2+r_1}{2})^2}=98\\\\\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%20%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.25%7D%7B2%7D%20%5Ctimes%200.99%20%2B%20%5Cfrac%7B%28%5Cfrac%7B1.25%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%200.625%20%2B100%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B%28%20100.625%29%7D%7B%28%5Cfrac%7B2%2Br_1%7D%7B2%7D%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C)
![\to 0.61875 + \frac{402.5}{(2+r_1)^2}=98\\\\\to 0.61875 -98 = \frac{402.5}{(2+r_1)^2}\\\\\to -97.38125= \frac{402.5}{(2+r_1)^2}\\\\\to (2+r_1)^2= \frac{402.5}{ -97.38125}\\\\\to (2+r_1)^2= -4.13\\\\ \to r_1=3.304\%](https://tex.z-dn.net/?f=%5Cto%200.61875%20%2B%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%3D98%5C%5C%5C%5C%5Cto%200.61875%20-98%20%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20-97.38125%3D%20%5Cfrac%7B402.5%7D%7B%282%2Br_1%29%5E2%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20%5Cfrac%7B402.5%7D%7B%20-97.38125%7D%5C%5C%5C%5C%5Cto%20%282%2Br_1%29%5E2%3D%20-4.13%5C%5C%5C%5C%20%5Cto%20r_1%3D3.304%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.5\% \times \frac{100}{2} \times 0.99+1.5\% \times \frac{100}{2} \times \frac{1}{(1+ \frac{3.300\%}{2})^2}+\frac{(1.5\% \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\\to \frac{1.5}{100} \times \frac{100}{2} \times 0.99+\frac{1.5}{100} \times \frac{100}{2} \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{100} \times \frac{100}{2}+100)}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%201.5%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.5%5C%25%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%281.5%5C%25%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%20%5Cfrac%7B1.5%7D%7B100%7D%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B100%7D%20%20%5Ctimes%20%20%5Cfrac%7B100%7D%7B2%7D%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to \frac{1.5}{2} \times 0.99+\frac{1.5}{2}\times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(\frac{1.5}{2} +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 0.7425+0.75 \times \frac{1}{(1+ \frac{\frac{3.300}{100}}{2})^2}+\frac{(0.75 +100)}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1+0.0165)^2}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4925 \times \frac{1}{(1.033)}+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7B1.5%7D%7B2%7D%20%20%5Ctimes%200.99%2B%5Cfrac%7B1.5%7D%7B2%7D%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%28%5Cfrac%7B1.5%7D%7B2%7D%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%200.7425%2B0.75%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%20%5Cfrac%7B%5Cfrac%7B3.300%7D%7B100%7D%7D%7B2%7D%29%5E2%7D%2B%5Cfrac%7B%280.75%20%20%2B100%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B0.0165%29%5E2%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4925%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281.033%29%7D%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C)
![\to 1.4925 \times 0.96+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328+\frac{(100.75 )}{(1+\frac{r_2}{2})^3}=97\\\\\to 1.4328-97= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to -95.5672= \frac{(100.75 )}{(1+\frac{r_2}{2})^3}\\\\\to (1+\frac{r_2}{2})^3= -1.054\\\\\to r_2=3.577\%](https://tex.z-dn.net/?f=%5Cto%201.4925%20%5Ctimes%200.96%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328%2B%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%3D97%5C%5C%5C%5C%5Cto%201.4328-97%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20-95.5672%3D%20%5Cfrac%7B%28100.75%20%29%7D%7B%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%7D%5C%5C%5C%5C%5Cto%20%281%2B%5Cfrac%7Br_2%7D%7B2%7D%29%5E3%3D%20-1.054%5C%5C%5C%5C%5Cto%20r_2%3D3.577%5C%25)
Assume that
will be a 18-month for the spot rate:
![\to 1.25\% \times \frac{100}{2} \times 0.99+1.25\% \times \frac{100}{2} \times \frac{1}{(1+\frac{3.300\%}{2})^2}+1.25\%\times\frac{100}{2} \times \frac{1}{(1+\frac{3.577\%}{2})^3}+(1.25\% \times \frac{\frac{100}{2}+100}{(1+\frac{r_3}{2})^4})=96\\\\](https://tex.z-dn.net/?f=%5Cto%201.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%200.99%2B1.25%5C%25%20%5Ctimes%20%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.300%5C%25%7D%7B2%7D%29%5E2%7D%2B1.25%5C%25%5Ctimes%5Cfrac%7B100%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B1%7D%7B%281%2B%5Cfrac%7B3.577%5C%25%7D%7B2%7D%29%5E3%7D%2B%281.25%5C%25%20%5Ctimes%20%5Cfrac%7B%5Cfrac%7B100%7D%7B2%7D%2B100%7D%7B%281%2B%5Cfrac%7Br_3%7D%7B2%7D%29%5E4%7D%29%3D96%5C%5C%5C%5C)
to solve this we get ![r_3=3.335\%](https://tex.z-dn.net/?f=r_3%3D3.335%5C%25)
All of the following phrases describe a partnership except (<span>B) high protection for your personal assets. Being with a partnership, at least, you have this idea of shared responsibility in making decisions for the company. Always, starting with low costs will surely be experienced in partnerships. The involvement between you and your partner will be up to 20 depends on the agreement.</span>
Answer:
$56,900
Explanation:
Compt. Maint. Mixing Packaging
Dept Cost 140,000 115,000
Cost allocation 32941 41177 65882
(Computer)
Cost allocation
(Maintenance) 56900 91041
Total 98077 156923
Workings.
Computer department cost allocation
Maintenance department = 4/17*140000 =32941
Mixing department = 5/17*140000 =41177
Packaging department = 8/17*140000= 65882
Maintenance department cost allocation
Total cost allocated = 147941
Mixing department = 5/13*147941 = 56900
Packaging department = 8/13*147941 =91041
Answer: C
Explanation: average total cost is at its minimum