1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
14

-5t^2+10t+22 does the ball reach a height of 35m

Mathematics
1 answer:
Alika [10]3 years ago
3 0

Answer:

Step-by-step explanation:

35=-5t²+10t+22

5t²-10t+13=0

disc =b²-4ac=(-10)²-4×5×13=100-260=-160<0

t is imaginary.

So ball never reaches a height of 35 m

You might be interested in
What is 2/7 as a decimal
Tamiku [17]
Its .2857142857(long decimal xD)
6 0
3 years ago
Read 2 more answers
PLEASE HELP! Write a numerical expression involving division in which the first step in evaluating the expression is addition. D
Tanzania [10]
4/(1+3) or \frac{4}{1+3}

Addition is the first step for two reasons.
1) the Order of Operations requires you do operations in parentheses first
2) the division cannot be performed until you know what you're dividing
8 0
3 years ago
What is the equation of a line that passes through the points (3, 6) and (8, 4)
Ymorist [56]
First let us find the slope between the two points.

Slope = Change in y / Change in x.

(3, 6) and (8, 4) compares to (x₁, y₁) and (x₂, y₂)

Slope = (y₂ - y₁) / (x₂ - x₁) =  (4 - 6) / (8 - 3) = -2/5 

Slope m = -2/5= -0.4

Using  y = mx + c,   using point (3, 6)

y = -0.4x  + c

6 = -0.4*3 + c

6 = -1.2 + c

6 + 1.2 = c

7.2 = c

c = 7.2

Equation = :       y = -0.4x +c

y = -0.4x + 7.2

y = -4/10  + 72/10

10y = -4x + 72

5y = -2x + 36

Equation =:      5y = -2x + 36

Hope this explains it.
4 0
3 years ago
Can someone solve this with the method of subtraction using addition please quick
Zina [86]

Answer:1. X=2 y=4

2. X=2.5 y=3

3.x=0 y=-1

Step-by-step explanation:

1. 6x=12

x=2

replace

4+y=8

y=4

2.

8x=20

x=2.5

replace

5+3y=14

y=3

3.

-6y=6

y=-1

replace

x=0

3 0
3 years ago
Find the laplace transform by intergration<br> f(t)=tcosh(3t)
Shkiper50 [21]
\mathcal L_s\{t\cosh3t\}=\displaystyle\int_0^\infty t\cosh3t e^{-st}\,\mathrm dt

Integrate by parts, setting

u_1=t\implies\mathrm du_1=\mathrm dt
\mathrm dv_1=\cosh3t e^{-st}\,\mathrm dt\implies v_1=\displaystyle\int\cosh3t e^{-st}\,\mathrm dt

To evaluate v_1, integrate by parts again, this time setting

u_2=\cosh3t\implies\mathrm du_2=3\sinh3t\,\mathrm dt
\mathrm dv_2=\displaystyle\int e^{-st}\,\mathrm dt\implies v_2=-\frac1se^{-st}

\implies\displaystyle\int\cosh3te^{-st}\,\mathrm dt=-\frac1s\cosh3te^{-st}+\frac3s\int \sinh3te^{-st}

Integrate by parts yet again, with

u_3=\sinh3t\implies\mathrm du_3=3\cosh3t\,\mathrm dt
\mathrm dv_3=e^{-st}\,\mathrm dt\implies v_3=-\dfrac1se^{-st}

\implies\displaystyle\int\cosh3te^{-st}\,\mathrm dt=-\frac1s\cosh3te^{-st}+\frac3s\left(-\frac1s\sinh3te^{-st}+\frac3s\int\cosh3te^{-st}\,\mathrm dt\right)
\displaystyle\int\cosh3te^{-st}\,\mathrm dt=-\frac1s\cosh3te^{-st}-\frac3{s^2}\sinh3te^{-st}+\frac9{s^2}\int\cosh3te^{-st}\,\mathrm dt
\displaystyle\frac{s^2-9}{s^2}\int\cosh3te^{-st}\,\mathrm dt=-\frac1s\cosh3te^{-st}-\frac3{s^2}\sinh3te^{-st}
\implies\displaystyle\underbrace{\int\cosh3te^{-st}\,\mathrm dt}_{v_1}=-\frac{(s\cosh3t+3\sinh3t)e^{-st}}{s^2-9}

So we have

\displaystyle\int_0^\infty t\cosh3t e^{-st}\,\mathrm dt=u_1v_1\big|_{t=0}^{t\to\infty}-\int_0^\infty v_1\,\mathrm du_1
=\displaystyle-\frac{t(s\cosh3t+3\sinh3t)e^{-st}}{s^2-9}\bigg|_{t=0}^{t\to\infty}-\int_0^\infty \left(-\frac{(s\cosh3t+3\sinh3t)e^{-st}}{s^2-9}\right)\,\mathrm dt
=\displaystyle\frac1{s^2-9}\int_0^\infty(s\cosh3t+3\sinh3t)e^{-st}\,\mathrm dt

We already have the antiderivative for the first term:

\displaystyle\frac s{s^2-9}\int_0^\infty \cosh3te^{-st}\,\mathrm dt=\frac s{s^2-9}\left(-\frac{(s\cosh3t+3\sinh3t)e^{-st}}{s^2-9}\right)\bigg|_{t=0}^{t\to\infty}
=\dfrac{s^2}{(s^2-9)^2}

And we can easily find the remaining term's antiderivative by integrating by parts (for the last time!), or by simply exchanging \cosh with \sinh in the derivation of v_1, so that we have

\displaystyle\frac3{s^2-9}\int_0^\infty\sinh3te^{-st}\,\mathrm dt=\frac3{s^2-9}\left(-\frac{(s\sinh3t+3\cosh3t)e^{-st}}{s^2-9}\right)\bigg|_{t=0}^{t\to\infty}
=\dfrac9{(s^2-9)^2}

(The exchanging is permissible because (\sinh x)'=\cosh x and (\cosh x)'=\sinh x; there are no alternating signs to account for.)

And so we conclude that

\mathcal L_s\{t\cosh3t\}=\dfrac{s^2+9}{(s^2-9)^2}
8 0
3 years ago
Other questions:
  • On January 2, Bering Co. disposes of a machine costing $44,000 with accumulated depreciation of $24,625. Prepare the entries to
    14·1 answer
  • What is 4.24 in simplified radical form? (: <br> I think it's 106/25 but I could be totally wrong.
    7·1 answer
  • Please help thanks
    14·1 answer
  • Convert 2.38 km to dm.
    6·1 answer
  • Solve the inequality and graph the solution.<br><br> -1 ≤ 3 – z
    10·1 answer
  • -4x = 16<br><br> a -64<br><br><br><br><br> b 4<br><br><br><br><br> c 20<br><br><br><br><br> d-4
    8·1 answer
  • Solve for X<br><br> X^2 + 43 = 572
    10·2 answers
  • Angles of triangle sand explain how u got each question and answer pls ! ((:
    8·1 answer
  • HELP ME PLEASE!! I NEED THIS!
    5·1 answer
  • Given that G=ab find the percentage increase in G when both a and b<br> increase by 10%
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!