1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
12

I don’t know what to do , the title is describe data collection and the instructions is describe the data set by listing the att

ribute measured the unit of measure the likely means of measurement and the number of observations

Mathematics
1 answer:
Nastasia [14]3 years ago
6 0

First one:

Height of plants (attribute)

Inches (unit of measurement)

Ruler? (means of measuring)

10 (# of observations)

Second one:

Weight of dogs (attribute)

Pounds (unit of measurement)

Scale? (means of measuring)

8 (# of observations)

You might be interested in
Bryan is buying notebooks and pens at an office supply store. Notebooks cost $3.59 and pens cost $1.49. He can soend up to $13.
Nesterboy [21]
$13=3.59x+1.49y
.............................
3 0
4 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
Help help help help plz
igor_vitrenko [27]
can’t see the whole question
5 0
3 years ago
Calculate the pay for the following day of a
USPshnik [31]

Answer:  $122.50

<u>Step-by-step explanation:</u>

In          Out

8:00    12:00    = 4 hours

12:45    17:30   =<u> 4.75 hours   </u>

          Total        8.75 hours

8.75 hours x $14/hr = $122.50

Note: to subtract 12:45 from 17:30, borrow 1 hour from 17 and add 60 minutes to 30:

 17:30       →         16:90

- 12:45                -<u> 12:45 </u>

                            4: 45

4 hours 45 minutes = 4\frac{3}{4} = 4.75 hours

6 0
4 years ago
What is the y-intercept?
zysi [14]

Answer:

9

Step-by-step explanation:

the line hits the y-axis at the point (0, 9) where x=0 meaning this point is the y-intercept being 9

8 0
3 years ago
Read 2 more answers
Other questions:
  • John earns x dollas per hour. petra earn 2 dollars per hour more than him. How much do they earn altogether per hour?
    7·1 answer
  • I do not understand this problem PLEASE HELP
    14·1 answer
  • Two machines are used for filling plastic bottles to a net volume of 16.0 ounces. A member of the quality engineering staff susp
    14·1 answer
  • Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = x + 1,
    9·1 answer
  • The graph shows the location of Amber's, Betsey's, and Claire's houses. Each unit on the graph represents 1 block.
    14·2 answers
  • What is the value of X?
    5·1 answer
  • Write the equation
    8·2 answers
  • Greg has traveled 240 miles by train at a constant speed for 5 hours. Max has traveled 180 miles by a car at a constant speed fo
    6·1 answer
  • Easy Cooking is a cooking supply company. Last year, the company sold a total of 5,340 ovens. This year, they sold 7,743 ovens.
    8·1 answer
  • Vanessa sold a vehicle and earned a 22%
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!