1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
15

An item is regularly priced at $60. Carmen bought it at a discount of 25% off the regular price. How much did Carmen pay?

Mathematics
1 answer:
Kaylis [27]3 years ago
6 0

Answer:

$45

Step-by-step explanation:

So the price is $60 and when its 25% off you will pay $60-15=$45

You might be interested in
58 less than a number n
viktelen [127]

Answer:

n - 58

Step-by-step explanation:

58 less than n is n - 58

If my answer is incorrect, pls correct me!

If you like my answer and explanation, mark me as brainliest!

-Chetan K

3 0
3 years ago
Read 2 more answers
Oh my god please help.
Serhud [2]

Answer:

its A

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Integrate the following problem:
vazorg [7]

Answer:

\displaystyle \frac{2 \cdot sin2x-cos2x}{5e^x} + C

Step-by-step explanation:

The integration by parts formula is: \displaystyle \int udv = uv - \int vdu

Let's find u, du, dv, and v for \displaystyle \int e^-^x \cdot cos2x \ dx .

  • u=e^-^x
  • du=-e^-^x dx
  • dv=cos2x \ dx
  • v= \frac{sin2x}{2}

Plug these values into the IBP formula:

  • \displaystyle \int e^-^x \cdot cos2x \ dx = e^-^x \cdot \frac{sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx
  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \int \frac{sin2x}{2} \cdot -e^-^x dx

Now let's evaluate the integral \displaystyle \int \frac{sin2x}{2} \cdot -e^-^x dx.

Let's find u, du, dv, and v for this integral:

  • u=-e^-^x
  • du=e^-^x dx
  • dv=\frac{sin2x}{2} dx
  • v=\frac{-cos2x}{4}  

Plug these values into the IBP formula:

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} - \int \frac{-cos2x}{4}\cdot e^-^x dx

Factor 1/4 out of the integral and we are left with the exact same integral from the question.

  • \displaystyle \int -e^-^x \cdot \frac{sin2x}{x}dx = -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx

Let's substitute this back into the first IBP equation.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ -e^-^x \cdot \frac{-cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]  

Simplify inside the brackets.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} - \Big [ \frac{e^-^x \cdot cos2x}{4} + \frac{1}{4} \int cos2x \cdot e^-^x dx \Big ]

Distribute the negative sign into the parentheses.

  • \displaystyle \int e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4} - \frac{1}{4} \int cos2x \cdot e^-^x dx

Add the like term to the left side.

  • \displaystyle \int e^-^x \cdot cos2x \ dx  + \frac{1}{4} \int cos2x \cdot e^-^x dx= \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  
  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x sin2x}{2} -  \frac{e^-^x \cdot cos2x}{4}  

Make the fractions have common denominators.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x}{4} -  \frac{e^-^x \cdot cos2x}{4}

Simplify this equation.

  • \displaystyle \frac{5}{4} \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4}

Multiply the right side by the reciprocal of 5/4.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{4} \cdot \frac{4}{5}

The 4's cancel out and we are left with:

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2e^-^x sin2x - e^-^x cos2x}{5}

Factor e^-^x out of the numerator.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{e^-^x(2 \cdot sin2x-cos2x)}{5}

Simplify this by using exponential properties.

  • \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x}

The final answer is \displaystyle \int   e^-^x \cdot cos2x \ dx = \frac{2 \cdot sin2x-cos2x}{5e^x} + C.

7 0
3 years ago
Read 2 more answers
Jules reads that i pint is equivalent to 0.473 he asks his teacher how many liters are in one pint .His teacher responds that th
sleet_krkn [62]

Answer:

Yes

Step-by-step explanation:

4 0
3 years ago
How many Apple are there if Jenny has 17 and Mark has 3
Diano4ka-milaya [45]

Answer:

twenty apples dsghaggegubvtvxdd

8 0
3 years ago
Read 2 more answers
Other questions:
  • On average, Betsy read 1 page of her book every 1.5 minutes. Her book has 116 pages. Raymond starts a 94- page book on Saturday
    10·1 answer
  • Find the geometric mean of 24 and 32
    9·2 answers
  • 1. Y varies inversely with x. If y = 9 when x = -5, find the value of x when y=-6.
    14·1 answer
  • Ucon Inc., a manufacturing company, handles all the supply chain functions on its own. This has resulted in an inefficient use o
    6·1 answer
  • Simplify the expression. 4x+3−9x=
    10·1 answer
  • Two less than the product od 7 and a number equal 3
    14·1 answer
  • The state highway department is studying traffic patterns on one of the busiest highways in the state. As part of the study, the
    8·1 answer
  • Untitled Question *
    13·1 answer
  • Hola chicos, solo necesito ayuda con la vida. Solo bromeaba o lo estoy?
    15·1 answer
  • Marc baked brownies in the brownie pan sowed below. Each day,he is going to 20 square centimeters of brownie from the pan.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!