Answer:
a = 4
Step-by-step explanation:
Answer:
paraell
Step-by-step explanation:
Well you would just multiply 374 by 15 and that would be your answer

<h2>
Explanation:</h2>
The nth term of an arithmetic series (
) and the sum of an arithmetic series (Sum), for n terms, can be found as:
![a_{n}=a_{1}+d(n-1) \\ \\ Sum=\frac{n}{2}[2a_{1}+(n-1)d] \\ \\ \\ Where: \\ \\ a_{1}:First \ term \\ \\ d:Common \ difference \\ \\ n=Number \ of \ term](https://tex.z-dn.net/?f=a_%7Bn%7D%3Da_%7B1%7D%2Bd%28n-1%29%20%5C%5C%20%5C%5C%20Sum%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a_%7B1%7D%2B%28n-1%29d%5D%20%5C%5C%20%5C%5C%20%5C%5C%20Where%3A%20%5C%5C%20%5C%5C%20a_%7B1%7D%3AFirst%20%5C%20term%20%5C%5C%20%5C%5C%20d%3ACommon%20%5C%20difference%20%5C%5C%20%5C%5C%20n%3DNumber%20%5C%20of%20%5C%20term)
So, in this exercise:
![a_{1}=a=9 \\ \\ d=4 \\ \\ n=16 \\ \\ \\ Sum=\frac{16}{2}[2(9)+(16-1)4] \\ \\ Sum=8[18+(15)4] \\ \\ Sum=8[18+60] \\ \\ Sum=8[78] \\ \\ \boxed{Sum=624}](https://tex.z-dn.net/?f=a_%7B1%7D%3Da%3D9%20%5C%5C%20%5C%5C%20d%3D4%20%5C%5C%20%5C%5C%20n%3D16%20%5C%5C%20%5C%5C%20%5C%5C%20Sum%3D%5Cfrac%7B16%7D%7B2%7D%5B2%289%29%2B%2816-1%294%5D%20%5C%5C%20%5C%5C%20Sum%3D8%5B18%2B%2815%294%5D%20%20%5C%5C%20%5C%5C%20Sum%3D8%5B18%2B60%5D%20%5C%5C%20%5C%5C%20Sum%3D8%5B78%5D%20%5C%5C%20%5C%5C%20%5Cboxed%7BSum%3D624%7D)
<h2>Learn more:</h2>
Missing numbers in triomino: brainly.com/question/10510270
#LearnWithBrainly
The equation that represents the <em>sinusoidal</em> function is
,
.
<h3>Procedure - Determination of an appropriate function based on given information</h3>
In this question we must find an appropriate model for a <em>periodic</em> function based on the information from statement. <em>Sinusoidal</em> functions are the most typical functions which intersects a midline (
) and has both a maximum (
) and a minimum (
).
Sinusoidal functions have in most cases the following form:
(1)
Where:
- Angular frequency
- Angular phase, in radians.
If we know that
,
,
,
and
, then the sinusoidal function is:
(2)
(3)
The resulting system is:
(2b)
(3b)
By applying <em>inverse trigonometric </em>functions we have that:
,
(2c)
,
(3c)
And we proceed to solve this system:


,

By (2c):



The equation that represents the <em>sinusoidal</em> function is
,
. 
To learn more on functions, we kindly invite to check this verified question: brainly.com/question/5245372