D(1-1/4)
=3/4d
3/4d represents the money saved on a pillow
Answer:
<em>Volume</em><em> </em><em>of</em><em> </em><em>cylinder</em><em> </em><em>is</em><em> </em>
<em>
</em>
22/7 × 16 ×11
= 553.14 cubic centimeters.
Answer:
- width: 18 in
- length: 27 in
Step-by-step explanation:
The relations between length (L) and width (W) are ...
W +9 = L
LW = 486
Substituting gives ...
(W+9)W = 486
W^2 +9W -486 = 0 . . . put in standard form
(W +27)(W -18) = 0 . . . . factor
W = 18 . . . . the positive solution
The width of the rectangle is 18 inches; the length is 27 inches.
_____
<em>Comment on factoring</em>
There are a number of ways to solve quadratics. Apart from using a graphing calculator, one of the easiest is factoring. Here, we're looking for factors of -486 that have a sum of 9.
486 = 2 × 3^5, so we might guess that the factors of interest are -2·3² = -18 and 3·3² = 27. These turn out to be correct: -18 +27 = 9; (-18)(27) = -486.
Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m