1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
8

Find the inverse Laplace transform f(t) of the function F(s). Write uc for the Heaviside function that turns on at c, not uc(t).

F(s) = (7e−7s)/(s2 − 49)f(t) =
Mathematics
1 answer:
zzz [600]3 years ago
6 0

Answer:

F(t)=\frac{-1}{2}e^{7(t-7)}+\frac{1}{2}e^{-7(t-7)}

Step-by-step explanation:

We have given F(S)=\frac{7e^{-7s}}{s^2-49}

Now  F(S)=e^{-7s}G(s)

Here G(S)=\frac{7}{S^2-49}

Now first find the Laplace inverse of G(S)

Using partial fraction

\frac{7}{(s+7)(s-7)}=\frac{A}{(S+7)}+\frac{B}{S-7}

7=A(S-7)+B(S+7)

On comparing the coefficient

A=\frac{1}{2}  and B=\frac{-1}{2}  

On putting the value of A and B  

G(S)=\frac{-1}{2(S+7)}+\frac{1}{2(S+7)}

Taking inverse Laplace

G(t)=\frac{-1}{2}e^{7t}+\frac{1}{2}e^{-7t}

Now in G(s) there is onether term e^{-7s}

So F(t)=\frac{-1}{2}e^{7(t-7)}+\frac{1}{2}e^{-7(t-7)}

You might be interested in
Solving inequalities.<br><br> 1. 2x + 3 &lt; 9<br><br> 2. 4x - 5 &gt; 43
Rudiy27

Answer:

1.   x< 3

2.   x>12

have a great day :)

Step-by-step explanation:

4 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
What is the Square root of 125
Anastaziya [24]
The square root of 125= 11.18.
3 0
4 years ago
Read 2 more answers
How do I do proofs? ​
Neko [114]
Is this algebra? What type of Math this
7 0
3 years ago
2y +6=3y+8<br> Verify it and explain step by step?
Over [174]
-6

2y = 3y + 2

-3y

-y = 2 so y = -2
4 0
4 years ago
Other questions:
  • Write the linear inequality shown in the graph.The gray area represents the shaded region.
    15·2 answers
  • 3(x - 2) + 48 = -3x
    15·1 answer
  • $1.79, $1.61, $1.96, $2.09, $1.84, $1.75 <br> ​<br> ​What is the range of gasoline prices?
    11·2 answers
  • A rectangle has an area of 82 ft2. What is<br> the length if the width is 10 ft?
    13·1 answer
  • Guys please last one please help?​
    15·1 answer
  • C'est quoi la semence (math)
    8·1 answer
  • a dance instructor wants 4 costumes to be yellow and 24 costumes to be blue what is the ratio of yellow to all
    13·1 answer
  • How many feet are in 5 yards? Razon Unitaria (Unit Rate)
    12·2 answers
  • Write an expression to represent: The product of -3 and B, increased by 1
    8·1 answer
  • FACTS:In 2010, the glacier was 1000 meters in length; it had retreated 255 meters in 15 years.Questions:1. Calculate the average
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!