Authentication can be done by the issuer of the security.
What do you mean by authentication?
Authentication is the act of proving an assertion, such as a computer system user's identification. Authentication is the process of verifying a person's or thing's identity, as opposed to identification, which is the act of indicating that identity. It could entail validating personal identification documents, verifying the authenticity of a website with a digital certificate, carbon dating an artefact, or guaranteeing that a product or document is not counterfeit.
Only a party with access to particular company documents may authenticate a mutilated certificate. It is most likely the issuer, but it could also be the transfer agent or registrar.
To learn more about authentication
brainly.com/question/28240257
#SPJ4
Hello!
Before Social Media , Many people liked the old classical way and they had there own way to communicate with people. With social media everything changed . Companies started to grow and real face to face communication was shrinking slowly . Kids locked themselves in there rooms to text friends and play games instead of playing outside. But technology does have a good affect for example if it wasn't for technology i wouldn't be able to help you right now ! If it wasn't for social media Wendy's wouldn't be able to Roast people . And contact over the phone would be limited .
HOPE I HELPED HAVE A BLESSED DAY!!
Answer:
here is what I think!
Explanation:
G-mail is:
- secure
- easy to use
- fast
- can be used to sign in anywhere!<u>(including brainly)</u>
- you don't need to pay when creating one
- can help you in billing and buying apps and their paid product
- <em><u>you </u></em> can use it because <em>why no!</em>
- some websites need G-mail to be used
thats why you should use G-mail
tell me if you have an idea!
Answer:
Answer explained
Explanation:
From the previous question we know that while searching for n^(1/r) we don't have to look for guesses less than 0 and greater than n. Because for less than 0 it will be an imaginary number and for rth root of a non negative number can never be greater than itself. Hence lowEnough = 0 and tooHigh = n.
we need to find 5th root of 47226. The computation of root is costlier than computing power of a number. Therefore, we will look for a number whose 5th power is 47226. lowEnough = 0 and tooHigh = 47226 + 1. Question that should be asked on each step would be "Is 5th power of number < 47227?" we will stop when we find a number whose 5th power is 47226.
A sixteen bit microprocessor chip used in early IBM PCs. The Intel 8088 was a version with an eight-bit externaldata bus.
The Intel 8086 was based on the design of the Intel 8080 <span>and </span>Intel 8085 (it was source compatible with the 8080)with a similar register set, but was expanded to 16 bits. The Bus Interface Unit fed the instruction stream to theExecution Unit through a 6 byte prefetch queue, so fetch and execution were concurrent - a primitive form ofpipelining (8086 instructions varied from 1 to 4 bytes).
It featured four 16-bit general registers, which could also be accessed as eight 8-bit registers, and four 16-bit indexregisters (including the stack pointer). The data registers were often used implicitly by instructions, complicatingregister allocation for temporary values. It featured 64K 8-bit I/O (or 32K 16 bit) ports and fixed vectored interrupts.There were also four segment registers that could be set from index registers.
The segment registers allowed the CPU to access 1 meg of memory in an odd way. Rather than just supplyingmissing bytes, as most segmented processors, the 8086 actually shifted the segment registers left 4 bits and addedit to the address. As a result, segments overlapped, and it was possible to have two pointers with the same valuepoint to two different memory locations, or two pointers with different values pointing to the same location. Mostpeople consider this a brain damaged design.
Although this was largely acceptable for assembly language, where control of the segments was complete (it couldeven be useful then), in higher level languages it caused constant confusion (e.g. near/far pointers). Even worse, thismade expanding the address space to more than 1 meg difficult. A later version, the Intel 80386, expanded thedesign to 32 bits, and "fixed" the segmentation, but required extra modes (suppressing the new features) forcompatibility, and retains the awkward architecture. In fact, with the right assembler, code written for the 8008 canstill be run on the most <span>recent </span>Intel 486.
The Intel 80386 added new op codes in a kludgy fashion similar to the Zilog Z80 and Zilog Z280. The Intel 486added full pipelines, and clock doubling (like <span>the </span>Zilog Z280).
So why did IBM chose the 8086 series when most of the alternatives were so much better? Apparently IBM's own engineers wanted to use the Motorola 68000, and it was used later in the forgotten IBM Instruments 9000 Laboratory Computer, but IBM already had rights to manufacture the 8086, in exchange for giving Intel the rights to its bubble memory<span> designs.</span> Apparently IBM was using 8086s in the IBM Displaywriter word processor.
Other factors were the 8-bit Intel 8088 version, which could use existing Intel 8085-type components, and allowed the computer to be based on a modified 8085 design. 68000 components were not widely available, though it could useMotorola 6800 components to an <span>extent.
</span>
Hope this helps