Answer:
B
Step-by-step explanation:
The total number of faces on a cube is 6.
The numbers under 3 are 1 and 2.
So numbers 1 and 2 give success.
P(<3) = 2/6
P(<3) = 1/3
The answer is B.
<h3>Answer is -9</h3>
=================================
Work Shown:
(g°h)(x) is the same as g(h(x))
So, (g°h)(0) = g(h(0))
Effectively h(x) is the input to g(x). Let's first find h(0)
h(x) = x^2+3
h(0) = 0^2+3
h(0) = 3
So g(h(x)) becomes g(h(0)) after we replace x with 0, then it updates to g(3) when we replace h(0) with 3.
Now let's find g(3)
g(x) = -3x
g(3) = -3*3
g(3) = -9
-------
alternatively, you can plug h(x) algebraically into the g(x) function
g(x) = -3x
g( h(x) ) = -3*( h(x) ) ... replace all x terms with h(x)
g( h(x) ) = -3*(x^2 + 3) ... replace h(x) on right side with x^2+3
g( h(x) ) = -3x^2 - 9
Next we can plug in x = 0
g( h(0) ) = -3(0)^2 - 9
g( h(0) ) = -9
we get the same result.
and 8
Step-by-step explanation:
and and and and and and and and and 8
9514 1404 393
Answer:
(a) x^2/16 +y^2/9 = 1
Step-by-step explanation:
The form for the equation of an ellipse centered at the origin is ...
(x/(semi-x-axis))^2 +(y/(semi-y-axis))^2 = 1
The vertex values tell you the semi-x-axis is 4 units, and the semi-y-axis is 3 units. Then you have ...
(x/4)^2 +(y/3)^2 = 1
x^2/16 +y^2/9 = 1
__
In case you don't remember that form, you can try any of the points in the equations. The equation that works will quickly become apparent.