The correct answer is: [B]: "40 yd² " .
_____________________________________________________
First, find the area of the triangle:
The formula of the area of a triangle, "A":
A = (1/2) * b * h ;
in which: " A = area (in units 'squared') ; in our case, " yd² " ;
" b = base length" = 6 yd.
" h = perpendicular height" = "(4 yd + 4 yd)" = 8 yd.
___________________________________________________
→ A = (1/2) * b * h = (1/2) * (6 yd) * (8 yd) = (1/2) * (6) * (8) * (yd²) ;
= " 24 yd² " .
___________________________________________________
Now, find the area, "A", of the square:
The formula for the area, "A" of a square:
A = s² ;
in which: "A = area (in "units squared") ; in our case, " yd² " ;
"s = side length (since a 'square' has all FOUR (4) equal side lengths);
A = s² = (4 yd)² = 4² * yd² = "16 yd² "
_________________________________________________
Now, we add the areas of BOTH the triangle AND the square:
_________________________________________________
→ " 24 yd² + 16 yd² " ;
to get: " 40 yd² " ; which is: Answer choice: [B]: " 40 yd² " .
_________________________________________________
Answer:
U
Step-by-step explanation:
It would be 1/6...
Hope i have done things for you
Answer: There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500
Step-by-step explanation:
given that;
n = 14
mean Ж = 19,850
standard deviation S = 1,084
degree of freedom df = n - 1 = ( 14 -1 ) = 13
H₀ : ц ≥ 20,500
H₁ : ц < 20,500
Now the test statistics
t = (Ж - ц) / ( s/√n)
t = ( 19850 - 20500) / ( 1084/√14)
t = -2.244
we know that our degree of freedom df = 13
from the table, the area under the t-distribution of the left of (t=-2.244) and for (df=13) is 0.0215
so P = 0.0215
significance ∝ = 0.05
we can confidently say that since our p value is less than the significance level, we reject the null hypothesis ( H₀ : ц ≥ 20,500 )
There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500