Union = {1,3,4,5,6,7}
Intersection = {5,6}
In case of plane, for y intercept, x and z are o .
So we will get
4(0)+5y-0=20
5y=20
Dividing both sides by 5
y = 4
So the y intercept is (0,4,0).
In second question, x intercept is 1, y intercept is -1 and z intercept is 2 .
So the correct option is the third equation , that is x-y+2z=4 .
Answer:
The answer is below
Step-by-step explanation:
1)
mean (μ) = 12, SD(σ) = 2.3, sample size (n) = 65
Given that the confidence level (c) = 90% = 0.9
α = 1 - c = 0.1
α/2 = 0.05
The z score of α/2 is the same as the z score of 0.45 (0.5 - 0.05) which is equal to 1.65
The margin of error (E) is given as:

The confidence interval = μ ± E = 12 ± 0.47 = (11.53, 12.47)
2)
mean (μ) = 23, SD(σ) = 12, sample size (n) = 45
Given that the confidence level (c) = 88% = 0.88
α = 1 - c = 0.12
α/2 = 0.06
The z score of α/2 is the same as the z score of 0.44 (0.5 - 0.06) which is equal to 1.56
The margin of error (E) is given as:

The confidence interval = μ ± E = 23 ± 2.8 = (22.2, 25.8)
Answer: 23 degrees
---------------------------------------
---------------------------------------
Explanation:
Using the inscribed angle theorem we can connect the central angle ABC and the inscribed angle ADC. The reason why is because they both cut off the minor arc AC
Angle ABC is given to be 46 degrees, the formula we use is shown below
central angle = 2*(inscribed angle)
angle ABC = 2*(angle ADC)
46 = 2*(angle ADC)
46/2 = 2*(angle ADC)/2 ... divide both sides by 2
23 = angle ADC
angle ADC = 23 degrees
You said X = (5y+1) / (y-2)
Multiply each side by (y-2):
X(y-2) = (5y+1)
Eliminate parentheses:
Xy - 2X = 5y + 1
Add 2X to each side:
Xy = 5y + 1 + 2X
Subtract 5y from each side:
(X-5)y = 1 + 2X
Divide each side by (X-5):
<em>y = (1+2X) / (X-5) </em>