<span>30 hours
For this problem, going to assume that the actual flow rate for both pipes is constant for the entire duration of either filling or emptying the pool. The pipe to fill the pool I'll consider to have a value of 1/12 while the drain that empties the pool will have a value of 1/20. With those values, the equation that expresses how many hour it will take to fill the pool while the drain is open becomes:
X(1/12 - 1/20) = 1
Now solve for X
X(5/60 - 3/60) = 1
X(2/60) = 1
X(1/30) = 1
X/30 = 1
X = 30
To check the answer, let's see how much water would have been added over 30 hours.
30/12 = 2.5
So 2 and a half pools worth of water would have been added. Now how much would be removed?
30/20 = 1.5
And 1 and half pools worth would have been removed. So the amount left in the pool is
2.5 - 1.5 = 1
And that's exactly the amount needed.</span>
3.78/6= 0.63
$0.63 per bottle
42(0.63)= $26.46
Answer: -1.78
Step-by-step explanation:
As per given description, we have
Population proportion : 
Sample size : n= 500
Sample proportion : 
Test statistic for population proportion :-

Hence, the test statistic for this hypothesis test for a proportion= -1.78
If I'm understanding the question right then 10.5^2
Answer:

Step-by-step explanation:
we know that
The original scale of the map is

If the map is enlarged to 3 times its size
then
the new scale will be
