Carbon dioxide can be transported through the blood via three methods. It is dissolved directly in the blood, bound to plasma proteins or hemoglobin, or converted into bicarbonate.
The majority of carbon dioxide is transported as part of the bicarbonate system. Carbon dioxide diffuses into red blood cells. Inside, carbonic anhydrase converts carbon dioxide into carbonic acid (H2CO3), which is subsequently hydrolyzed into bicarbonate (HCO3−) and H+. The H+ ion binds to hemoglobin in red blood cells, and bicarbonate is transported out of the red blood cells in exchange for a chloride ion. This is called the chloride shift.
Bicarbonate leaves the red blood cells and enters the blood plasma. In the lungs, bicarbonate is transported back into the red blood cells in exchange for chloride. The H+ dissociates from hemoglobin and combines with bicarbonate to form carbonic acid with the help of carbonic anhydrase, which further catalyzes the reaction to convert carbonic acid back into carbon dioxide and water. The carbon dioxide is then expelled from the lungs.
It is (D) Carbon dioxide.
in lactic acid=C6H12O6 to produce 2C3H6O3+Energy.
in alcoholic fermentation=C6H12O6 to produce 2C2H5OH+2CO2.
therefore all of them produce (D) Carbon dioxide.
Answer:
This question is incomplete as it lacks options, however, it will be answered BROADLY so the it can be understood enough to select the correct answer.
Please find the explanation below
Explanation:
Cells perform different functions and look differently because of the process of CELL DIFFERENTIATION. All cells arise from a single stem cell, which then gradually differentiates into different types of cells with different functions, as they divide.
At the molecular level, these different types of cells contain the same DNA sequence as rightly stated in the question. However, they look and perform differently because some of the genes are turned on while the others are turned off via the process of GENE EXPRESSION.
Therefore, a blood cell and skin cell possess exactly the same DNA sequence but look different and perform different functions because of CELL DIFFERENTIATION in which some genes on the DNA sequence are expressed and others are repressed. For example, in the blood cell; the genes coding for certain proteins found in blood are expressed while every other gene is silenced or inhibited. This allows those cells to perform only blood-related functions.
Your answer is prophase 1. These stages listed in order are prophase 1, metaphase 1, prophase 2, metaphase 2. Hoped this helped.