Answer:
1. Callum = 2; Eilidh = 17; Caitlin's =22.
2. Ewan = 44; tree = 308.
Explanation:
Q1. Callum, Eilidh, and Caitlin
Let x = Callum's age
      y = Eilidh's age
      z = Caitlin's age
We have three conditions.
(1)  x = y - 5
(2) z = y + 15
(3) x + y + z = 31
Step 1. Eliminate one of the variables in two of the equations
Subtract (1) from (2):                      z - x = 20
Rearrange:                 (4)             -x + z = 20
Solve (2) for y:           (5)                     y = z - 15
Substitute into (3):         x +  z - 15  + z = 31
                                  (6) x + 2z             = 46
Step 2. Set up two new equations in two variables
(5)                          -x +   z = 20
(6)                           x + 2z = 46
Add (5) and (6):           3z = 66
Divide each side by 2: z = 22
Step 3. Substitute z into (5)
 -x + 22 = 20
  x          = 2
Step 4. Substitute x into (1)
                                     2 = y - 5
Add 5 to each side     y = 7
Callum's age is 2; Eilidh's age is 7; Caitlin's age is 22.
Q2. Ewan and the tree
Let x = Ewan's age
       y = tree's age
We have two conditions.
                                      (1)          y = 7x
                                      (2)   x + y = 352
Rearrange (1)                (3) -7x + y =     0
                                      (2)    x + y = 352
Subtract (3) from (2)          8x       = 352
Divide each side by 8         x       =    44
Substitute y into (1)                    y = 7 × 44
                                                    y =   308
Ewan's age is 44; the tree's age is 308.