Minimizing the sum of the squared deviations around the line is called Least square estimation.
It is given that the sum of squares is around the line.
Least squares estimations minimize the sum of squared deviations around the estimated regression function. It is between observed data, on the one hand, and their expected values on the other. This is called least squares estimation because it gives the least value for the sum of squared errors. Finding the best estimates of the coefficients is often called “fitting” the model to the data, or sometimes “learning” or “training” the model.
To learn more about regression visit: brainly.com/question/14563186
#SPJ4
For the answer to the question above, I believe the answer is simply <u><em>8.
</em></u>
2 groups divided into four participants. So all in all people needed is 8.
I hope this helped you. Have a nice day!
<u><em /></u>
Answer:
5in by 5in by 5in
Step-by-step explanation:
We are not told wat to find but we can as well find the dimension of the prism that will minimize its surface area.
Given
Volume = 125in³
Formula
V = w²h ..... 1
S = 2w²+4wh ..... 2
w is the side length of the square base
h is the height of the prism
125 = w²h
h = 125/w² ..... 3
Substitute eqn 3 into 2 as shown
S = 2w²+4wh
S = 2w²+4w(125/w²)
S = 2w²+500/w
To minimize the surface area, dS/dw = 0
dS/dw =4w-500/w²
0= 4w-500/w²
Multiply through by w²
0 = 4w³-500
-4w³ = -500
w³ = 500/4
w³ =125
w = cuberoot(125)
w = 5in
Get the height
125 =w²h
125 = 25h
h = 125/25
h = 5in
Hence the dimension of the prism is 5in by 5in by 5in
Answer:
For first lamp ; The resultant probability is 0.703
For both lamps; The resultant probability is 0.3614
Step-by-step explanation:
Let X be the lifetime hours of two bulbs
X∼exp(1/1400)
f(x)=1/1400e−1/1400x
P(X<x)=1−e−1/1400x
X∼exp(1/1400)
f(x)=1/1400 e−1/1400x
P(X<x)=1−e−1/1400x
The probability that both of the lamp bulbs fail within 1700 hours is calculated below,
P(X≤1700)=1−e−1/1400×1700
=1−e−1.21=0.703
The resultant probability is 0.703
Let Y be a lifetime of another lamp two bulbs
Then the Z = X + Y will follow gamma distribution that is,
X+Y=Z∼gamma(2,1/1400)
2λZ∼
X+Y=Z∼gamma(2,1/1400)
2λZ∼χ2α2
The probability that both of the lamp bulbs fail within a total of 1700 hours is calculated below,
P(Z≤1700)=P(1/700Z≤1.67)=
P(χ24≤1.67)=0.3614
The resultant probability is 0.3614