1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jok3333 [9.3K]
4 years ago
9

What are zeros of the function fx =x2+5x +5written in simplest radical form

Mathematics
1 answer:
Bess [88]4 years ago
3 0

Answer:-5/2±1/2\sqrt{5}

Step-by-step explanation:

x^2+ 5x +5=0

a=1,b=5,c=5

plugging into the quadratic formula

(-5±\sqrt{5})/2

You might be interested in
<img src="https://tex.z-dn.net/?f=%5Cmathsf%7BIf~~x%3D10%5E%7B%5Cdfrac%7B1%7D%7B1-log~z%7D%7D~~and~~y%3D10%5E%7B%5Cdfrac%7B1%7D%
alukav5142 [94]
\large\begin{array}{l} \textsf{Prove the following theorem:}\\\\ &#10;\textsf{If }\mathsf{x=10^\frac{1}{1-\ell og\,z}}\textsf{ and &#10;}\mathsf{y=10^{\frac{1}{1-\ell og\,x}},}\textsf{ then &#10;}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}.}\\\\\\ &#10;\bullet~~\textsf{From the &#10;hypoteses, we must have:}\\\\ \mathsf{\ell og\,z\ne 1~\Rightarrow~z>0~~and~~z\ne &#10;10\qquad(i)}\\\\ \mathsf{\ell og\,x\ne 1~\Rightarrow~x>0~~and~~x\ne &#10;10\qquad(ii)} \end{array}

__________


\large\begin{array}{l} \textsf{Let's continue with the proof, using (i) and (ii) everytime}\\\textsf{it's needed.}\\\\ \textsf{If }\mathsf{x=10^{\frac{1}{1-\ell og\,z}},}\textsf{ then}\\\\ \mathsf{\ell og\,x=\ell og\!\left(10^{\frac{1}{1-\ell og\,z}}\right )}\\\\ \mathsf{\ell og\,x=\dfrac{1}{1-\ell og\,z}}\\\\ \mathsf{-\ell og\,x=\dfrac{-1}{1-\ell og\,z}} \end{array}


\large\begin{array}{l}&#10; \mathsf{1-\ell og\,x=1+\dfrac{-1}{1-\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,x=\dfrac{1-\ell og\,z}{1-\ell og\,z}+\dfrac{-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{1-\ell og\,z-1}{1-\ell og\,z}}\\\\ &#10;\mathsf{1-\ell og\,x=\dfrac{-\ell og\,z}{1-\ell &#10;og\,z}}\qquad\textsf{(using (i) below)} \end{array}


\large\begin{array}{l} \textsf{Since }\mathsf{\ell og\,x\ne 1,}\textsf{ both sides of the equality above will}\\\textsf{never be zero. Therefore, both sides can be inverted:}\\\\\textsf{Taking the reciprocal of both sides,}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1}{~\frac{-\ell og\,z}{1-\ell og\,z}~}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ \mathsf{\dfrac{1}{1-\ell og\,x}=\dfrac{\ell og\,z-1}{\ell og\,z}} \end{array}


\large\begin{array}{l} \textsf{From the last line above, we get as an immediate condition}\\\textsf{for z:}\\\\ \mathsf{\ell og\,z\ne 0~~\Rightarrow~~z\ne 1\qquad(iii)}\\\\\\ \textsf{Taking exponentials with base 10,}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,x}}=10^{\frac{1-\ell og\,z}{-\ell og\,z}}} \end{array}


\large\begin{array}{l}&#10; \textsf{But }\mathsf{10^{\frac{1}{1-\ell &#10;og\,x}}=y.}\textsf{ So we get}\\\\ &#10;\mathsf{y=10^{\frac{1-\ell og\,z}{-\ell og\,z}}}\\\\\\\textsf{then}\\\\ \mathsf{\ell og\,y=\ell og\!\left(10^{\frac{1-\ell og\,z}{-\ell&#10; og\,z}}\right)}\\\\ \mathsf{\ell og\,y=\dfrac{1-\ell og\,z}{-\ell &#10;og\,z}}\\\\ \end{array}

\large\begin{array}{l} &#10;\mathsf{-\ell og\,y=-\,\dfrac{1-\ell og\,z}{-\ell og\,z}}\\\\ &#10;\mathsf{-\ell og\,y=\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell&#10; og\,y=1+\dfrac{1-\ell og\,z}{\ell og\,z}}\\\\ \mathsf{1-\ell &#10;og\,y=\dfrac{\ell og\,z}{\ell og\,z}+\dfrac{1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{\ell og\,z+1-\ell og\,z}{\ell &#10;og\,z}}\\\\ \mathsf{1-\ell og\,y=\dfrac{1}{\ell &#10;og\,z}}\qquad\textsf{(using (iii) below)} \end{array}


\large\begin{array}{l} \\\\ \textsf{Notice that the right side of the equality above is a nonzero}\\\textsf{number, so it is possible to take the reciprocal of both sides:}\\\\ \mathsf{\dfrac{1}{1-\ell og\,y}=\ell og\,z}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=10^{\ell og\,z}}\\\\ \mathsf{10^{\frac{1}{1-\ell og\,y}}=z}\\\\ \boxed{\begin{array}{c}\mathsf{z=10^{\frac{1}{1-\ell og\,y}}} \end{array}}\\\\\\ \textsf{which is what had to be shown.} \end{array}


If you're having problems understanding the answer, try to see it through your browser: brainly.com/question/2105740


\large\begin{array}{l} \textsf{Any doubt? Please, comment below.}\\\\\\ \textsf{Best wishes! :-)} \end{array}


Tags: <em>logarithm log proof statement theorem exponential base condition hypothesis</em>

3 0
3 years ago
Pls help thanks, i’ll give brainliest if you give me a correct answer
Citrus2011 [14]

Answer:

Equation : \frac{5}{7}x = \frac{5}{4}

Gallons needed = 1\frac{3}{4} gallons

Step-by-step explanation:

It is given that:

Gallons of paint used by Tyler = 1\frac{1}{4} = \frac{5}{4}

Area of fence painted = 5/7

Let,

x be the whole fence needed to paint.

\frac{5}{7}x = \frac{5}{4}

Because we know that 5/7 of the fence is painted with 5/4 gallons of paint.

Multiplying the equation with 7/5

\frac{7}{5}*\frac{5}{7}x=\frac{5}{4}*\frac{7}{5}\\x= \frac{7}{4}\\x = 1\frac{3}{4}

Therefore,

Equation : \frac{5}{7}x = \frac{5}{4}

Gallons needed = 1\frac{3}{4} gallons

7 0
3 years ago
Determine the interquartile range for the data.<br> 16, 19, 25, 20,<br> 22, 21, 17, 20
Roman55 [17]

Answer:

the answer is 15 subtract the highest number from the lowest

5 0
3 years ago
Which expression is equivalent to the given expression?<br> (10c6d-5)(2c-5d4
wolverine [178]

Answer:

if you simplify the expression you will get

20c^{7}d - 20 {c}^{6}  {d}^{2}

5 0
3 years ago
DeShawn has $53. He needs at least $76 to buy the jacket he wants. How much more money does he need for the jacket?
Blizzard [7]

Answer:

$23

Step-by-step explanation:

76-53=23

8 0
3 years ago
Read 2 more answers
Other questions:
  • A line contains the point (8, 5). if the slope of the line is 5/7, write the equation of the line using point-slope form.
    15·1 answer
  • What information do you need to know in order to find the surface area of a rectangular prism
    6·1 answer
  • Angle A and Angle B are
    7·1 answer
  • How are the areas of polygons used to find the surface area formulas for three dimensional figures?
    13·1 answer
  • You must show all steps and provide any evidence needed in your solution to receive full credit.
    10·1 answer
  • About how many middle School students were surveyed for this graph?
    10·2 answers
  • Plsss help meeeee thank youuu
    10·2 answers
  • Look at the box-and-whisker plot. What is the measure of the third quartile (Q3)?
    6·1 answer
  • The alphabet has been playing us this whole time!
    12·2 answers
  • I WILL MARK BRAINLIEST PLEASE HELP
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!