Answer:
Step-by-step explanation:
From the information given, the population is divided into sub groups. Each group would consist of citizens picking a particular choice as the most important problem facing the country. The choices are the different categories. In this case, the null hypothesis would state that the distribution of proportions for all categories is the same in each population. The alternative hypothesis would state that the distributions is different. Therefore, the correct test to use to determine if the distribution of "problem facing this country today" is different between the two different years is
A) Use a chi-square test of homogeneity.
So to fine slope you would use the formula down below:
rise/run
So use a graphed point, 0, -5 and you rise or count up quadrants up to a point and then horizontally move to when you find that point.
So from 0,-5 go up 9 vertically, and you would be on the 4
Go horizontal 3 spots and your on a designated point.
So the rise is four and the run is 3
So 4/3 is the slope
In the y= Mx + b equation you would set the equation like this:
y= 4/3 + -5
The m in this formula stands for the slop and the b stands for the y-intercept
The y-intercept is the point that is on the y-axis and where it starts.
<h2>
Hello!</h2>
The answers are:
The possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
<h2>
Why?</h2>
To solve the problem, we need to remember the following properties of the exponents and roots:
![a\sqrt[n]{b}=\sqrt[n]{a^{n}*b} \\\\\sqrt[n]{a^{m} }=a^{\frac{m}{n}}\\\\(a^{b})^{c}=a^{b*c}](https://tex.z-dn.net/?f=a%5Csqrt%5Bn%5D%7Bb%7D%3D%5Csqrt%5Bn%5D%7Ba%5E%7Bn%7D%2Ab%7D%20%5C%5C%5C%5C%5Csqrt%5Bn%5D%7Ba%5E%7Bm%7D%20%7D%3Da%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%5C%5C%5C%5C%28a%5E%7Bb%7D%29%5E%7Bc%7D%3Da%5E%7Bb%2Ac%7D)
Then, we are given the expression:

So, finding "x", we have:
![x^{3}=375\\\\(x^{3})^{\frac{1}{3} } =(375)^{\frac{1}{3}}\\\\x=\sqrt[3]{375}=\sqrt[3]{125*3}=\sqrt[3]{125}*\sqrt[3]{3}=5\sqrt[3]{3}](https://tex.z-dn.net/?f=x%5E%7B3%7D%3D375%5C%5C%5C%5C%28x%5E%7B3%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%28375%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%5C%5C%5C%5Cx%3D%5Csqrt%5B3%5D%7B375%7D%3D%5Csqrt%5B3%5D%7B125%2A3%7D%3D%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B3%7D%3D5%5Csqrt%5B3%5D%7B3%7D)
Hence, the possible values for x in the equation, are:
First option, ![5\sqrt[3]{3}](https://tex.z-dn.net/?f=5%5Csqrt%5B3%5D%7B3%7D)
Second option, ![\sqrt[3]{375}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B375%7D)
Have a nice day!
Answer: The last line is the answer
12 - 4x <u><</u> 20
20 - 12 = 8
-4x = 8
-4/4 = 8/-4
x = -2
New inequality: x <u>></u> -2
Step-by-step explanation: