Answer:
( 5 , 7 )
Step-by-step explanation:
I Hope this helps. Im trying to level up so I'd appreiciate it if you marked me as brainliest. Thank you!
Answer:
Please see attached image for the sketch with the labels.
Length "x" of the ramp = 11.70 ft
Step-by-step explanation:
Notice that the geometry to represent the ramp is a right angle triangle, for which we know one of its acute angles (
), and the size of the side opposite to it (4 ft). Our unknown is the hypotenuse "x" of this right angle triangle, which is the actual ramp length we need to find.
For this, we use the the "sin" function of an angle in the triangle, which is defined as the quotient between the side opposite to the angle, divided by the hypotenuse, and then solve for the unknown "x" in the equation:

Therefore the length of the ramp rounded to the nearest hundredth as requested is: 11.70 ft
Answer:
number 1 is b
Step-by-step explanation:
Answer:
x=6
Step-by-step explanation:
24÷4=6
so 6×4=24 because of distributive proterty meaning that x=6 :))
Answer:
First option: cos(θ + φ) = -117/125
Step-by-step explanation:
Recall that cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
If sin(θ) = -3/5 in Quadrant III, then cos(θ) = -4/5.
Since tan(φ) = sin(φ)/cos(φ), then sin(φ) = -7/25 and cos(φ) = 24/25 in Quadrant II.
Therefore:
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
cos(θ + φ) = (-4/5)(24/25) - (-3/5)(-7/25)
cos(θ + φ) = (-96/125) - (21/125)
cos(θ + φ) = -96/125 - 21/125
cos(θ + φ) = -117/125