Answer:
Exact heights of the next 100 babies born in a region.
Step-by-step explanation:
A discrete random variable involves two key factors ; discrete and randomness ; Hence, a discrete random variable should have a finite or countable Number of outputs or values. It should also stem from a random procedure. Here, the height of the next hundred babies is a random procedure as the next 100 babies in the region are unknown until Given birth too and as such all pregnant women have the chance of having their babies among. Since, we are dealing with exact height values which are countable (100), then we this is a discrete random variable.
Answer:
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 38 minutes, standard deviation of 4.5 minutes.
Determine the interval that represents the middle 68% of her commute times.
Within 1 standard deviation of the mean. So
38 - 4.5 = 33.5 minutes
38 + 4.5 = 42.5 minutes.
The interval that represents the middle 68% of her commute times is between 33.5 and 42.5 minutes.
Answer:
$13.10 represents the rate of change
Step-by-step explanation:
13.1 is the only value in the equation with a variable (g). There is an additional $13.10 charge for every gigabyte used over the limit, and this is the rate of change.
For example, if 5 gigabytes were used over the limit, the charge would be 13.1(5) or $65.50
Answer:
![[p-|p|*10^{-3} \, , \, p+|p|* 10^-3]](https://tex.z-dn.net/?f=%5Bp-%7Cp%7C%2A10%5E%7B-3%7D%20%5C%2C%20%2C%20%5C%2C%20p%2B%7Cp%7C%2A%2010%5E-3%5D)
Step-by-step explanation
The relative error is the absolute error divided by the absolute value of p. for an approximation p*, the relative error is
r = |p*-p|/|p|
we want r to be at most 10⁻³, thus
|p*-p|/|p| ≤ 10⁻³
|p*-p| ≤ |p|* 10⁻³
therefore, p*-p should lie in the interval [ - |p| * 10⁻³ , |p| * 10⁻³ ], and as a consecuence, p* should be in the interval [p - |p| * 10⁻³ , p + |p| * 10⁻³ ]
The greatest common factor of 20 and 30 is 10. This is because 10 is the largest number that when it is used to divide 20 or 30, it equals a whole number.
The simple way for us to solve is to write down the factors of both numbers, find the factors that match for both numbers, and see which is the largest out of those that match.
20: <u>1</u>,<u>2</u>,4,<u>5</u>,<u>10</u>,20
30: <u>1</u>,<u>2</u>,3,<u>5</u>,6,<u>10</u>,15,30
Using that logic, we can see that 10 is the greatest factor that the numbers share.