Answer:
Channel proteins and Carrier proteins
Explanation:
These are type of membrane proteins that transcend the entire length of phosphoslipid bi- layer in the plasma membrane.They facilitate the movement of ions and molecules across the walls of the plasma membranes.
Generally, substances like glucose, amino acids, are too large to pass through the phopholipid bilayers. Likewise ions of potassium, sodium calcium, because of their polarities can not pass through either. They are ferried across the phospholipid by group of protein structures called channel proteins. Some are also transported across by carrier proteins. The process by which these protein structures aided the diffusion of substances across the phospholipid bilayer is called Facilitated diffusion.
Channel proteins are pores, that are filled with water molecules with the entrance well gated. That is the entrance is controlled by part in the inner structure of the protein which can open or close the pores like a gate to control the movement of ions across it. e.g Sodium channels are gated for movement of sodium ions by voltage or ligands(chemicals) during nervous transmission to elicits action potential. Like wise Potassium channels allow diffusion of potassium ions across the phospholipid bilayers. it gates are shut when sodium channels are open; this regulate ion exchange.
Their structures are well fixed in shape , specific to the substance or ions being transported;and the rate of diffusion depends on the like hood of opening of the gate or closure.
Carrier molecules also in the membranes do not have a fixed shape, and their transport direction is determined by the direction of concentration gradients. Thus they can flip on either sides of the membranes to aid diffusion across. Their movement can be both passive and active, and the rates of diffusion depends on the number of available carrier proteins in the membrane. They are also specific to the ions they transport.And are not gated,
Therefore these two membrane integral proteins facilitate movements of substances across the phospholipild bilayers
Answer:
(2⁵)²: 1024 combinations
Explanation:
In this case, the chromosome haploid number (n) of the target species is equal to 10, and therefore its diploid number (2n) is equal to 5 (i.e., somatic cells in the target species contain 5 pairs of chromosomes). That means that one individual can produce 2⁵ or 32 different gametic combinations. Moreover, the number of possible combinations that emerge from paring different gametes (sexual reproduction) can be calculated as (32)² = 1024 combinations.
koala
the koala lives in the forest Australia has no forests they all burnt down
Answer:
Explanation:
infectious diseases can spread in a variety of ways: through the air, from direct or indirect contact with another person, soiled objects, skin or mucous membrane, saliva, urine, blood and body secretions, through sexual contact, and through contaminated food and water.
Hope it helps
Answer:
what are you trying to ask about?