Answer:
Al estudiante le falta caminar
de kilómetro.
Step-by-step explanation:
Un estudiante debe recorrer dos tercios de kilómetro para llegar al colegio. Dos tercios equivale a la fracción
.
El estudiante avanza medio kilómetro en bus. Un medio equivale a la fracción
, por lo tanto un medio es la mitad de una cantidad. Para calcular la distancia recorrida en bus se realiza la siguiente multiplicación:

Resolviendo:

Entonces, la distancia recorrida en bus es
de kilómetro.
Para calcular la distancia recorrida a pie se calcula la diferencia entre la distancia total a recorrer por el estudiante y la distancia recorrida en bus. Esto es:

Resolviendo:

<u><em>Al estudiante le falta caminar </em></u>
<u><em> de kilómetro.</em></u>
we know that
<u>Vertical angles</u> are a pair of opposite and congruent angles formed by intersecting lines.
so
Let
x1---------> angle vertical 1
x2---------> angle vertical 2
x1=x2 ------> equation 1
in this problem
if the vertical angles formed are supplementary
that means that
x1+x2=180 ------> equation 2
substitute equation 1 in equation 2
x1+x1=180
2x1=180
x1=180/2
x1=90 degrees
therefore
<u>the answer is</u>
The vertical angles are right angles
Answer:
- d - cost
- a - number of attendees
<u>If budget is $99, then the equation is:</u>
- 99 = a + 96
- a = 99 - 96
- a = 3
Maximum number of attendees is 3
The inverse, converse and contrapositive of a statement are used to determine the true values of the statement
<h3>How to determine the inverse, converse and contrapositive</h3>
As a general rule, we have:
If a conditional statement is: If p , then q .
Then:
- Inverse -> If not p , then not q .
- Converse -> If q , then p .
- Contrapositive -> If not q , then not p .
Using the above rule, we have:
<u>Statement 1</u>
- Inverse: If a parallelogram does not have a right angle, then it is not a rectangle.
- Converse: If a parallelogram is a rectangle, then it has a right angle.
- Contrapositive: If a parallelogram is a not rectangle, then it does not have a right angle.
All three statements above are true
<u>Statement 2</u>
- Inverse: If two angles of one triangle are not congruent to two angles of another, then the third angles are not congruent.
- Converse: If the third angles of two triangle are congruent, then the two angles are congruent to two angles of another
- Contrapositive: If the third angles of two triangle are not congruent, then the two angles are not congruent to two angles of another
All three statements above are also true
Read more about conditional statements at:
brainly.com/question/11073037
It’s 90 after you multiply the length, width, and height